ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting the detectability of oscillations in solar-type stars observed by Kepler

170   0   0.0 ( 0 )
 نشر من قبل William Chaplin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here, we outline how to make an estimate of the detectability of solar-like oscillations in any given Kepler target, using rough estimates of the temperature and radius, and the Kepler apparent magnitude.



قيم البحث

اقرأ أيضاً

We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with dete cted oscillations fall significantly with increasing levels of activity. The results present strong evidence for the impact of magnetic activity on the properties of near-surface convection in the stars, which appears to inhibit the amplitudes of the stochastically excited, intrinsically damped solar-like oscillations.
The properties of the acoustic modes are sensitive to magnetic activity. The unprecedented long-term Kepler photometry, thus, allows stellar magnetic cycles to be studied through asteroseismology. We search for signatures of magnetic cycles in the se ismic data of Kepler solar-type stars. We find evidence for periodic variations in the acoustic properties of about half of the 87 analysed stars. In these proceedings, we highlight the results obtained for two such stars, namely KIC 8006161 and KIC 5184732.
The preliminary results of an analysis of the KIC 5390438 and KIC 5701829 light curves are presented. The variations of these stars were detected by Baran et al. (2011a) in a search for pulsating M dwarfs in the Kepler public database. The objects ha ve been observed by the Kepler spacecraft during the Q2 and Q3 runs in a short-candence mode (integration time of $sim$ 1 min). A Fourier analysis of the time series data has been performed by using the PERIOD04 package. The resulting power spectrum of each star shows a clear excess of power in the frequency range 100 and 350 $mu$Hz with a sequence of spaced peaks typical of solar-like oscillations. A rough estimation of the large and small separations has been obtained. Spectroscopic observations secured at the Observatorio Astronomico Nacional in San Pedro Martir allowed us to derive a spectral classification K2III and K0III for KIC 5390438 and KIC 5701829, respectively. Thus, KIC 5390438 and KIC 5701829 have been identified as solar-like oscillating red giant stars.
Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to sim1% precision, and ages to sim2.5% precision (respectively 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.
In the Sun, the frequencies of the acoustic modes are observed to vary in phase with the magnetic activity level. These frequency variations are expected to be common in solar-type stars and contain information about the activity-related changes that take place in their interiors. The unprecedented duration of Kepler photometric time-series provides a unique opportunity to detect and characterize stellar magnetic cycles through asteroseismology. In this work, we analyze a sample of 87 solar-type stars, measuring their temporal frequency shifts over segments of length 90 days. For each segment, the individual frequencies are obtained through a Bayesian peak-bagging tool. The mean frequency shifts are then computed and compared with: 1) those obtained from a cross-correlation method; 2) the variation in the mode heights; 3) a photometric activity proxy; and 4) the characteristic timescale of the granulation. For each star and 90-d sub-series, we provide mean frequency shifts, mode heights, and characteristic timescales of the granulation. Interestingly, more than 60% of the stars show evidence for (quasi-)periodic variations in the frequency shifts. In the majority of the cases, these variations are accompanied by variations in other activity proxies. About 20% of the stars show mode frequencies and heights varying approximately in phase, in opposition to what is observed for the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا