ترغب بنشر مسار تعليمي؟ اضغط هنا

The Neptune-Sized Circumbinary Planet Kepler-38b

94   0   0.0 ( 0 )
 نشر من قبل Jerome A. Orosz
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M_A = 0.949 +/- 0.059 solar masses and R_A = 1.757 +/- 0.034 solar radii) paired with a low-mass star (M_B = 0.249 +/- 0.010 solar masses and R_B = 0.2724 +/- 0.0053 solar radii) in a mildly eccentric (e=0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1 through 11), from which a planetary period of 105.595 +/- 0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35 +/- 0.11 Earth radii, or 1.12 +/- 0.03 Neptune radii. Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 Earth masses (7.11 Neptune masses or 0.384 Jupiter masses) at 95% confidence. This upper limit should decrease as more Kepler data become available.

قيم البحث

اقرأ أيضاً

We report the discovery of a Neptune-size (R_p = 3.87 +/- 0.06 R_Earth) transiting circumbinary planet, Kepler-1661 b, found in the Kepler photometry. The planet has a period of ~175 days and its orbit precesses with a period of only 35 years. The pr ecession causes the alignment of the orbital planes to vary, and the planet is in a transiting configuration only ~7% of the time as seen from Earth. As with several other Kepler circumbinary planets, Kepler-1661 b orbits close to the stability radius, and is near the (hot) edge of habitable zone. The planet orbits a single-lined, grazing eclipsing binary, containing a 0.84 M_Sun and 0.26 M_Sun pair of stars in a mildly eccentric (e=0.11), 28.2-day orbit. The system is fairly young, with an estimated age of ~1-3 Gyrs, and exhibits significant starspot modulations. The grazing-eclipse configuration means the system is very sensitive to changes in the binary inclination, which manifests itself as a change in the eclipse depth. The starspots contaminate the eclipse photometry, but not in the usual way of inducing spurious eclipse timing variations. Rather, the starspots alter the normalization of the light curve, and hence the eclipse depths. This can lead to spurious eclipse depth variations, which are then incorrectly ascribed to binary orbital precession.
We report the discovery of a transiting, Rp = 4.347+/-0.099REarth, circumbinary planet (CBP) orbiting the Kepler K+M Eclipsing Binary (EB) system KIC 12351927 (Kepler-413) every ~66 days on an eccentric orbit with ap = 0.355+/-0.002AU, ep = 0.118+/-0 .002. The two stars, with MA = 0.820+/-0.015MSun, RA = 0.776+/-0.009RSun and MB = 0.542+/-0.008MSun, RB = 0.484+/-0.024RSun respectively revolve around each other every 10.11615+/-0.00001 days on a nearly circular (eEB = 0.037+/-0.002) orbit. The orbital plane of the EB is slightly inclined to the line of sight (iEB = 87.33+/-0.06 degrees) while that of the planet is inclined by ~2.5 degrees to the binary plane at the reference epoch. Orbital precession with a period of ~11 years causes the inclination of the latter to the sky plane to continuously change. As a result, the planet often fails to transit the primary star at inferior conjunction, causing stretches of hundreds of days with no transits (corresponding to multiple planetary orbital periods). We predict that the next transit will not occur until 2020. The orbital configuration of the system places the planet slightly closer to its host stars than the inner edge of the extended habitable zone. Additionally, the orbital configuration of the system is such that the CBP may experience Cassini-States dynamics under the influence of the EB, in which the planets obliquity precesses with a rate comparable to its orbital precession. Depending on the angular precession frequency of the CBP, it could potentially undergo obliquity fluctuations of dozens of degrees (and complex seasonal cycles) on precession timescales.
We present the discovery of KIC 9632895b, a 6.2 Earth-radius planet in a low-eccentricity, 240.5-day orbit about an eclipsing binary. The binary itself consists of a 0.93 and 0.194 solar mass pair of stars with an orbital period of 27.3 days. The pla ne of the planets orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the latter half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced transits. The precession period is ~103 years, and during that cycle, transits are visible only ~8% of the time. This has the important implication that for every system like KIC 9632895 that we detect, there are ~12 circumbinary systems that exist but are not currently exhibiting transits. The planets mass is too small to noticeably perturb the binary, consequently its mass is not measurable with these data; but our photodynamical model places a 1-sigma upper limit of 16 Earth masses. With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, and making it the third of ten Kepler circumbinary planets to do so.
Kepler-408 is one of the 33 planet-hosting {it Kepler} stars for which asteroseismology has been used to investigate the orientation of the stellar rotation axis relative to the planetary orbital plane. The transiting hot Earth, Kepler-408b, has an o rbital period of 2.5 days and a radius of $0.86$~$R_oplus$, making it much smaller than the planets for which spin-orbit alignment has been studied using the Rossiter-McLaughlin effect. Because conflicting asteroseismic results have been reported in the literature, we undertake a thorough re-appraisal of this system and perform numerous checks for consistency and robustness. We find that the conflicting results are due to the different models for the low-frequency noise in the power spectrum. A careful treatment of the background noise resolves these conflicts, and shows that the stellar inclination is $is=42^{+5}_{-4}$ degrees. Kepler-408b is, by far, the smallest planet known to have a significantly misaligned orbit.
We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (~1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06+/-0.01 RJup it is also the largest CBP to date. The planet produced three transits in the light-curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass to be 1.52+/-0.65 MJup. The planet revolves around an 11-day period eclipsing binary consisting of two Solar-mass stars on a slightly inclined, mildly eccentric (e_bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earths, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا