ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for the impact of stellar activity on the detectability of solar-like oscillations observed by Kepler

129   0   0.0 ( 0 )
 نشر من قبل William Chaplin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with detected oscillations fall significantly with increasing levels of activity. The results present strong evidence for the impact of magnetic activity on the properties of near-surface convection in the stars, which appears to inhibit the amplitudes of the stochastically excited, intrinsically damped solar-like oscillations.



قيم البحث

اقرأ أيضاً

Over 2,000 stars were observed for one month with a high enough cadence in order to look for acoustic modes during the survey phase of the Kepler mission. Solar-like oscillations have been detected in about 540 stars. The question of why no oscillati ons were detected in the remaining stars is still open. Previous works explained the non-detection of modes with the high level of magnetic activity. However, the studied stars contained some classical pulsators and red giants that could have biased the results. In this work, we revisit this analysis on a cleaner sample of 1,014 main-sequence solar-like stars. First we compute the predicted amplitude of the modes. We find that the stars with detected modes have an amplitude to noise ratio larger than 0.94. We measure reliable rotation periods and the associated photometric magnetic index for 684 stars and in particular for 323 stars where the mode amplitude is predicted to be high enough to be detected. We find that among these 323 stars 32% have a magnetic activity level larger than the Sun at maximum activity, explaining the non-detection of p modes. Interestingly, magnetic activity cannot be the primary reason responsible for the absence of detectable modes in the remaining 68% of the stars without p modes detected and with reliable rotation periods. Thus, we investigate metallicity, inclination angle, and binarity as possible causes of low mode amplitudes. Using spectroscopic observations for a subsample, we find that a low metallicity could be the reason for suppressed modes. No clear correlation with binarity nor inclination is found. We also derive the lower limit for our photometric activity index (of 20-30 ppm) below which rotation and magnetic activity are not detected. Finally with our analysis we conclude that stars with a photometric activity index larger than 2,000 ppm have 98.3% probability of not having oscillations detected.
Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here, we outline how to make an estimate of the detectability of solar-like oscillations in any given Kepler target, using rough estimates of the temperature and radius, and the Kepler apparent magnitude.
$theta$ Cygni is an F3 spectral-type main-sequence star with visual magnitude V=4.48. This star was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were obtained d uring Quarter 6 (June-September 2010) and subsequently in Quarters 8 and 12-17. We present analyses of the solar-like oscillations based on Q6 and Q8 data, identifying angular degree $l$ = 0, 1, and 2 oscillations in the range 1000-2700 microHz, with a large frequency separation of 83.9 plus/minus 0.4 microHz, and frequency with maximum amplitude 1829 plus/minus 54 microHz. We also present analyses of new ground-based spectroscopic observations, which, when combined with angular diameter measurements from interferometry and Hipparcos parallax, give T_eff = 6697 plus/minus 78 K, radius 1.49 plus/minus 0.03 solar radii, [Fe/H] = -0.02 plus/minus 0.06 dex, and log g = 4.23 plus/minus 0.03. We calculate stellar models matching the constraints using several methods, including using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses 1.35-1.39 solar masses and ages 1.0-1.6 Gyr. theta Cygs T_eff and log g place it cooler than the red edge of the gamma Doradus instability region established from pre-Kepler ground-based observations, but just at the red edge derived from pulsation modeling. The pulsation models show gamma Dor gravity-mode pulsations driven by the convective-blocking mechanism, with frequencies of 1 to 3 cycles/day (11 to 33 microHz). However, gravity modes were not detected in the Kepler data, one signal at 1.776 cycles/day (20.56 microHz) may be attributable to a faint, possibly background, binary. Asteroseismic studies of theta Cyg and other A-F stars observed by Kepler and CoRoT, will help to improve stellar model physics and to test pulsation driving mechanisms.
The preliminary results of an analysis of the KIC 5390438 and KIC 5701829 light curves are presented. The variations of these stars were detected by Baran et al. (2011a) in a search for pulsating M dwarfs in the Kepler public database. The objects ha ve been observed by the Kepler spacecraft during the Q2 and Q3 runs in a short-candence mode (integration time of $sim$ 1 min). A Fourier analysis of the time series data has been performed by using the PERIOD04 package. The resulting power spectrum of each star shows a clear excess of power in the frequency range 100 and 350 $mu$Hz with a sequence of spaced peaks typical of solar-like oscillations. A rough estimation of the large and small separations has been obtained. Spectroscopic observations secured at the Observatorio Astronomico Nacional in San Pedro Martir allowed us to derive a spectral classification K2III and K0III for KIC 5390438 and KIC 5701829, respectively. Thus, KIC 5390438 and KIC 5701829 have been identified as solar-like oscillating red giant stars.
Oscillation properties are usually measured by fitting symmetric Lorentzian profiles to the power spectra of Sun-like stars. However the line profiles of solar oscillations have been observed to be asymmetrical for the Sun. The physical origin of thi s line asymmetry is not fully understood, although it should depend on the depth dependence of the source of wave excitation (convective turbulence) and details of the observable (velocity or intensity). For oscillations of the Sun, it has been shown that neglecting the asymmetry leads to systematic errors in the frequency determination. This could subsequently affects the results of seismic inferences of the solar internal structure. Using light curves from the {it Kepler} spacecraft we have measured mode asymmetries in 43 stars. We confirm that neglecting the asymmetry leads to systematic errors that can exceed the $1sigma$ confidence intervals for seismic observations longer than one year. Therefore, the application of an asymmetric Lorentzian profile is to be favoured to improve the accuracy of the internal stellar structure and stellar fundamental parameters. We also show that the asymmetry changes sign between cool Sun-like stars and hotter stars. This provides the best constraints to date on the location of the excitation sources across the Hertzsprung-Russel diagram.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا