ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariants of the special orthogonal group and an enhanced Brauer category

191   0   0.0 ( 0 )
 نشر من قبل Gus Lehrer
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We first give a short intrinsic, diagrammatic proof of the First Fundamental Theorem of invariant theory (FFT) for the special orthogonal group $text{SO}_m(mathbb{C})$, given the FFT for $text{O}_m(mathbb{C})$. We then define, by means of a presentation with generators and relations, an enhanced Brauer category $widetilde{mathcal{B}}(m)$ by adding a single generator to the usual Brauer category $mathcal{B}(m)$, together with four relations. We prove that our category $widetilde{mathcal{B}}(m)$ is actually (and remarkably) {em equivalent} to the category of representations of $text{SO}_m$ generated by the natural representation. The FFT for $text{SO}_m$ amounts to the surjectivity of a certain functor $mathcal{F}$ on $text{Hom}$ spaces, while the Second Fundamental Theorem for $text{SO}_m$ says simply that $mathcal{F}$ is injective on $text{Hom}$ spaces. This theorem provides a diagrammatic means of computing the dimensions of spaces of homomorphisms between tensor modules for $text{SO}_m$ (for any $m$). These methods will be applied to the case of the orthosymplectic Lie algebras $text{osp}(m|2n)$, where the super-Pfaffian enters, in a future work.



قيم البحث

اقرأ أيضاً

In this paper we present a categorical version of the first and second fundamental theorems of the invariant theory for the quantized symplectic groups. Our methods depend on the theory of braided strict monoidal categories which are pivotal, more explicitly the diagram category of framed tangles.
We define an infinite chain of subcategories of the partition category by introducing the left-height ($l$) of a partition. For the Brauer case, the chain starts with the Temperley-Lieb ($l=-1$) and ends with the Brauer ($l=infty$) category. The End sets are algebras, i.e., an infinite tower thereof for each $l$, whose representation theory is studied in the paper.
Let $G$ be a real classical group of type $B$, $C$, $D$ (including the real metaplectic group). We consider a nilpotent adjoint orbit $check{mathcal O}$ of $check G$, the Langlands dual of $G$ (or the metaplectic dual of $G$ when $G$ is a real metapl ectic group). We classify all special unipotent representations of $G$ attached to $check{mathcal O}$, in the sense of Barbasch and Vogan. When $check{mathcal O}$ is of good parity, we construct all such representations of $G$ via the method of theta lifting. As a consequence of the construction and the classification, we conclude that all special unipotent representations of $G$ are unitarizable, as predicted by the Arthur-Barbasch-Vogan conjecture. We also determine precise structure of the associated cycles of special unipotent representations of $G$.
103 - Ruotao Yang 2021
We prove the twisted Whittaker category on the affine flag variety and the category of representations of the mixed quantum group are equivalent.
Let C_n denote the representation category of a finite supergroup generated by purely odd n-dimensional vector space. We compute the Brauer-Picard group BrPic(C_n) of C_n. This is done by identifying BrPic(C_n) with the group of braided tensor autoeq uivalences of the Drinfeld center of C_n and studying the action of the latter group on the categorical Lagrangian Grassmannian of C_n. We show that this action corresponds to the action of a projective symplectic group on a classical Lagrangian Grassmannian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا