ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted Whittaker category on affine flags and category of representations of mixed quantum group

104   0   0.0 ( 0 )
 نشر من قبل Ruotao Yang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Ruotao Yang




اسأل ChatGPT حول البحث

We prove the twisted Whittaker category on the affine flag variety and the category of representations of the mixed quantum group are equivalent.



قيم البحث

اقرأ أيضاً

Let $mathfrak{g}_0$ be a simple Lie algebra of type ADE and let $U_q(mathfrak{g})$ be the corresponding untwisted quantum affine algebra. We show that there exists an action of the braid group $B(mathfrak{g}_0)$ on the quantum Grothendieck ring $K_t( mathfrak{g})$ of Hernandez-Leclercs category $C_{mathfrak{g}}^0$. Focused on the case of type $A_{N-1}$, we construct a family of monoidal autofunctors ${mathscr{S}_i}_{iin mathbb{Z}}$ on a localization $T_N$ of the category of finite-dimensional graded modules over the quiver Hecke algebra of type $A_{infty}$. Under an isomorphism between the Grothendieck ring $K(T_N)$ of $T_N$ and the quantum Grothendieck ring $K_t({A^{(1)}_{N-1}})$, the functors ${mathscr{S}_i}_{1le ile N-1}$ recover the action of the braid group $B(A_{N-1})$. We investigate further properties of these functors.
Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $mathcal{C}^0_{mathfrak{g}}$ be Hernandez-Leclercs category. For a duality datum $mathcal{D}$ in $mathcal{C}^0_{mathfrak{g}}$, we denote by $mathcal{F}_{mathcal{D }}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $mathcal{D}$ to provide the functor $mathcal{F}_{mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $mathcal{C}^0_{mathfrak{g}}$, and show that all simple modules in $mathcal{C}^0_{mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.
The convolution ring $K^{GL_n(mathcal{O})rtimesmathbb{C}^times}(mathrm{Gr}_{GL_n})$ was identified with a quantum unipotent cell of the loop group $LSL_2$ in [Cautis-Williams, J. Amer. Math. Soc. 32 (2019), pp. 709-778]. We identify the basis formed by the classes of irreducible equivariant perverse coherent sheaves with the dual canonical basis of the quantum unipotent cell.
127 - Roman Bezrukavnikov 2012
The article is a contribution to the local theory of geometric Langlands correspondence. The main result is a categorification of the isomorphism between the (extended) affine Hecke algebra, thought of as an algebra of Iwahori bi-invariant functions on a semi-simple group over a local non-Archimedian field, and Grothendieck group of equivariant coherent sheaves on Steinberg variety of the Langlands dual group; this isomorphism due to Kazhdan--Lusztig and Ginzburg is a key step in the proof of tamely ramified local Langlands conjectures. The paper is a continuation of an earlier joint work with S. Arkhipov, it relies on technical material developed in a paper with Z. Yun.
We define an infinite chain of subcategories of the partition category by introducing the left-height ($l$) of a partition. For the Brauer case, the chain starts with the Temperley-Lieb ($l=-1$) and ends with the Brauer ($l=infty$) category. The End sets are algebras, i.e., an infinite tower thereof for each $l$, whose representation theory is studied in the paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا