ﻻ يوجد ملخص باللغة العربية
Let $G$ be a real classical group of type $B$, $C$, $D$ (including the real metaplectic group). We consider a nilpotent adjoint orbit $check{mathcal O}$ of $check G$, the Langlands dual of $G$ (or the metaplectic dual of $G$ when $G$ is a real metaplectic group). We classify all special unipotent representations of $G$ attached to $check{mathcal O}$, in the sense of Barbasch and Vogan. When $check{mathcal O}$ is of good parity, we construct all such representations of $G$ via the method of theta lifting. As a consequence of the construction and the classification, we conclude that all special unipotent representations of $G$ are unitarizable, as predicted by the Arthur-Barbasch-Vogan conjecture. We also determine precise structure of the associated cycles of special unipotent representations of $G$.
The special linear representation of a compact Lie group G is a kind of linear representation of compact Lie group G with special properties. It is possible to define the integral of linear representation and extend this concept to special linear representation for next using.
A special symplectic Lie group is a triple $(G,omega, abla)$ such that $G$ is a finite-dimensional real Lie group and $omega$ is a left invariant symplectic form on $G$ which is parallel with respect to a left invariant affine structure $ abla$. In t
We define an involution on the space of compact tempered unipotent representations of inner twists of a split simple $p$-adic group $G$ and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroup
Through combining the work of Jean-Loup Waldspurger (cite{waldspurger10} and cite{waldspurgertemperedggp}) and Raphael Beuzart-Plessis (cite{beuzart2015local}), we give a proof for the tempered part of the local Gan-Gross-Prasad conjecture (cite{ggpo
In this article we formulate and prove the main theorems of the theory of character sheaves on unipotent groups over an algebraically closed field of characteristic p>0. In particular, we show that every admissible pair for such a group G gives rise