ﻻ يوجد ملخص باللغة العربية
We present the Video Ladder Network (VLN) for efficiently generating future video frames. VLN is a neural encoder-decoder model augmented at all layers by both recurrent and feedforward lateral connections. At each layer, these connections form a lateral recurrent residual block, where the feedforward connection represents a skip connection and the recurrent connection represents the residual. Thanks to the recurrent connections, the decoder can exploit temporal summaries generated from all layers of the encoder. This way, the top layer is relieved from the pressure of modeling lower-level spatial and temporal details. Furthermore, we extend the basic version of VLN to incorporate ResNet-style residual blocks in the encoder and decoder, which help improving the prediction results. VLN is trained in self-supervised regime on the Moving MNIST dataset, achieving competitive results while having very simple structure and providing fast inference.
We propose an unsupervised variational model for disentangling video into independent factors, i.e. each factors future can be predicted from its past without considering the others. We show that our approach often learns factors which are interpretable as objects in a scene.
This paper proposes a self-supervised learning approach for video features that results in significantly improved performance on downstream tasks (such as video classification, captioning and segmentation) compared to existing methods. Our method ext
Video-to-speech is the process of reconstructing the audio speech from a video of a spoken utterance. Previous approaches to this task have relied on a two-step process where an intermediate representation is inferred from the video, and is then deco
When humans observe a physical system, they can easily locate objects, understand their interactions, and anticipate future behavior, even in settings with complicated and previously unseen interactions. For computers, however, learning such models f
In many vision-based reinforcement learning (RL) problems, the agent controls a movable object in its visual field, e.g., the players avatar in video games and the robotic arm in visual grasping and manipulation. Leveraging action-conditioned video p