ترغب بنشر مسار تعليمي؟ اضغط هنا

The Physics of Heavy Quark Distributions in Hadrons: Collider Tests

107   0   0.0 ( 0 )
 نشر من قبل Gennady Lykasov I
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wave functions---the intrinsic quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of $gamma$/$Z$/$W$ particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsic heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xf and novel fixed target measurements which can be tested at the LHC.



قيم البحث

اقرأ أيضاً

Examining the evolution of the maximum of valence quark distribution weighted by Bjorken x, $h(x,t)equiv xq_V(x,t)$, we observe that $h(x,t)$ at the peak should become a one parameter function; $h(x_p,t)=Phi(x_p(t))$, where $x_p$ is the position of t he peak and $t= log{Q^2}$. This observation is used to derive a new model independent relation which connects the partial derivative of the valence parton distribution functions (PDFs) in $x_p$ to the QCD evolution equation through the $x_p$-derivative of the logarithm of the function $Phi(x_p(t))$. A numerical analysis of this relation using empirical PDFs results in a observation of the exponential form of the $Phi(x_p(t)) = h(x_p,t) = Ce^{D x_p(t)}$ for leading to next-to-next leading order approximations of PDFs for the all $Q^2$ range covering four orders in magnitude. The exponent, $D$, of the observed height-position correlation function converges with the increase of the order of approximation. This result holds for all PDF sets considered. A similar relation is observed also for pion valence quark distribution, indicating that the obtained relation may be universal for any non-singlet partonic distribution. The observed height - position correlation is used also to indicate that no finite number exchanges can describe the analytic behavior of the valence quark distribution at the position of the peak at fixed $Q^2$.
We review the current understanding of heavy quark parton distributions in nucleons and their impact on deep inelastic scattering, collider physics, and other processes at high energies. The determination of the heavy-quark parton distribution functi ons is particularly significant for the analysis of hard processes at LHC energies, including the forward rapidity high $x_mathrm{F}$ domain. The contribution of intrinsic heavy quarks, which are multiply connected to the valence quarks of nucleons, is reviewed within non-perturbative physics which provides new information on the fundamental structure of hadrons in QCD. A new prediction for the non-perturbative intrinsic charm-anticharm asymmetry of the proton eigenstate has recently been obtained from a QCD lattice gauge theory calculation of the protons $G_mathrm{E}^p(Q^2)$ form factor. This form factor only arises from non-valence quarks and anti-quarks if they have different contributions in the protons eigenstate. This result, together with the exclusive and inclusive connection and analytic constraints on the form of hadronic structure functions from Light-Front Holographic QCD (LFHQCD) predicts a significant non-perturbative $c(x,Q) - bar{c}(x,Q)$ asymmetry in the proton structure function at high $x$, consistent with the dynamics predicted by intrinsic charm models. Recent ATLAS data on the associated production of prompt photons and charm-quark jets in $pp$ collisions at $sqrt{s} = 8$ TeV has provided new constraints on non-perturbative intrinsic charm and tests of the LGTH predictions. We also focus on other experimental observables which have high sensitivity to the intrinsic heavy contributions to PDFs.
141 - Wu-Ki Tung , H.L. Lai , J. Pumplin 2007
The systematic treatment of heavy quark mass effects in DIS in current CTEQ global analysis is summarized. Applications of this treatment to the comparison between theory and experimental data on DIS charm production are described. The possibility of intrinsic charm in the nucleon is studied. The issue of determining the charm mass in global analysis is discussed.
The search for stable heavy exotic hadrons is a promising way to observe new physics processes at collider experiments. The discovery potential for such particles can be enhanced or suppressed by their interactions with detector material. This paper describes a model for the interactions in matter of stable hadrons containing an exotic quark of charges $pm {1/3}e$ or $pm {2/3}e$ using Regge phenomenology and the Quark Gluon String Model. The influence of such interactions on searches at the LHC is also discussed.
118 - S. Kretzer 2003
Previously published CTEQ6 parton distributions adopt the conventional zero-mass parton scheme; these sets are most appropriate for use with massless hard-scattering matrix elements commonly found in most physics applications. For precision observabl es which are sensitive to charm and bottom quark mass effects, we provide in this paper an additional CTEQ6HQ parton distribution set determined in the more general variable flavor number scheme which incorporates heavy flavor mass effects. The results are obtained by combining these parton distributions with consistently matched DIS structure functions computed in the same scheme. We describe the analysis procedure, examine the predominant features of the new distributions, and compare with previous distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا