ﻻ يوجد ملخص باللغة العربية
We review the current understanding of heavy quark parton distributions in nucleons and their impact on deep inelastic scattering, collider physics, and other processes at high energies. The determination of the heavy-quark parton distribution functions is particularly significant for the analysis of hard processes at LHC energies, including the forward rapidity high $x_mathrm{F}$ domain. The contribution of intrinsic heavy quarks, which are multiply connected to the valence quarks of nucleons, is reviewed within non-perturbative physics which provides new information on the fundamental structure of hadrons in QCD. A new prediction for the non-perturbative intrinsic charm-anticharm asymmetry of the proton eigenstate has recently been obtained from a QCD lattice gauge theory calculation of the protons $G_mathrm{E}^p(Q^2)$ form factor. This form factor only arises from non-valence quarks and anti-quarks if they have different contributions in the protons eigenstate. This result, together with the exclusive and inclusive connection and analytic constraints on the form of hadronic structure functions from Light-Front Holographic QCD (LFHQCD) predicts a significant non-perturbative $c(x,Q) - bar{c}(x,Q)$ asymmetry in the proton structure function at high $x$, consistent with the dynamics predicted by intrinsic charm models. Recent ATLAS data on the associated production of prompt photons and charm-quark jets in $pp$ collisions at $sqrt{s} = 8$ TeV has provided new constraints on non-perturbative intrinsic charm and tests of the LGTH predictions. We also focus on other experimental observables which have high sensitivity to the intrinsic heavy contributions to PDFs.
In these lectures, I present several important applications of QCD sum rules to the decay processes involving heavy-flavour hadrons. The first lecture is introductory. As a study case, the sum rules for decay constants of the heavy-light mesons are c
The $12~$GeV electron beam energy at Jefferson Laboratory provides ideal electroproduction kinematics for many novel tests of QCD in both the perturbative and nonperturbative domains. These include tests of the quark flavor dependence of the nuclear
We present a preliminary analysis of the heavy-heavy spectrum and heavy-light decay constants in full QCD, using a tadpole-improved SW quark action and an RG-improved gauge action on a 16^3 x 32 lattice with four sea quark masses corresponding to m_p
We present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wave func
This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of Quark-Gluon Plasma believed to have created in heavy-ion collisions and in early universe are reported.