ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Feature of Valence Quark Distributions in Hadrons

71   0   0.0 ( 0 )
 نشر من قبل Misak Sargsian
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Examining the evolution of the maximum of valence quark distribution weighted by Bjorken x, $h(x,t)equiv xq_V(x,t)$, we observe that $h(x,t)$ at the peak should become a one parameter function; $h(x_p,t)=Phi(x_p(t))$, where $x_p$ is the position of the peak and $t= log{Q^2}$. This observation is used to derive a new model independent relation which connects the partial derivative of the valence parton distribution functions (PDFs) in $x_p$ to the QCD evolution equation through the $x_p$-derivative of the logarithm of the function $Phi(x_p(t))$. A numerical analysis of this relation using empirical PDFs results in a observation of the exponential form of the $Phi(x_p(t)) = h(x_p,t) = Ce^{D x_p(t)}$ for leading to next-to-next leading order approximations of PDFs for the all $Q^2$ range covering four orders in magnitude. The exponent, $D$, of the observed height-position correlation function converges with the increase of the order of approximation. This result holds for all PDF sets considered. A similar relation is observed also for pion valence quark distribution, indicating that the obtained relation may be universal for any non-singlet partonic distribution. The observed height - position correlation is used also to indicate that no finite number exchanges can describe the analytic behavior of the valence quark distribution at the position of the peak at fixed $Q^2$.



قيم البحث

اقرأ أيضاً

289 - Masashi Wakamatsu 2014
It is now widely recognized that a key to unravel the nonperturbative chiral-dynamics of QCD hidden in the deep-inelastic-scattering observables is the flavor structure of sea-quark distributions in the nucleon. We analyze the flavor structure of the nucleon sea in both of the unpolarized and longitudinally polarized parton distribution functions (PDFs) within a single theoretical framework of the flavor SU(3) chiral quark soliton model (CQSM), which contains only one adjustable parameter $Delta m_s$, the effective mass difference between the strange and nonstrange quarks. A particular attention is paid to a nontrivial correlation between the flavor asymmetry of the unpolarized and longitudinally polarized sea-quark distributions and also to a possible particle-antiparticle asymmetry of the strange quark distributions in the nucleon. We also investigate the charge-symmetry-violation (CSV) effects in the parton distribution functions exactly within the same theretical framework, which is expected to provide us with valuable information on the relative importance of the asymmetry of the strange and antistrange distributions and the CSV effects in the valence-quark distributions inside the nucleon in the resolution scenario of the so-called NuTeV anomaly in the extraction of the Weinberg angle.
We present an updated extraction of the transversity parton distribution based on the analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets in collinear factorization. Data for proton and deuteron targets ma ke it possible to perform a flavor separation of the valence components of the transversity distribution, using di-hadron fragmentation functions taken from the semi-inclusive production of two pion pairs in back-to-back jets in e+e- annihilation. The e+e- data from Belle have been reanalyzed using the replica method and a more realistic estimate of the uncertainties on the chiral-odd interference fragmentation function has been obtained. Then, the transversity distribution has been extracted by using the most recent and more precise COMPASS data for deep-inelastic scattering off proton targets. Our results represent the most accurate estimate of the uncertainties on the valence components of the transversity distribution currently available.
We present an extraction of the valence transversity parton distributions based on an analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets. Recently released data for proton and deuteron targets at HERMES a nd COMPASS permit a flavor separation of valence transversities. The present extraction is performed in the framework of collinear factorization, where dihadron fragmentation functions are involved. The latter are taken from a previous analysis of electron-positron annihilation measurements.
Beginning with precise data on the ratio of structure functions in deep inelastic scattering (DIS) from $^3$He and $^3$H, collected on the domain $0.19 leq x_B leq 0.83$, where $x_B$ is the Bjorken scaling variable, we employ a robust method for extr apolating such data to arrive at a model-independent result for the $x_B=1$ value of the ratio of neutron and proton structure functions. Combining this with information obtained in analyses of DIS from nuclei, corrected for target-structure dependence, we arrive at a prediction for the protons valence-quark ratio: $left. d_v/u_v right|_{x_Bto 1} = 0.230 (57)$. Requiring consistency with this result presents a challenge to many descriptions of proton structure.
219 - I. M. Dremin 2012
Colliding high energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features are seen that provide informationon the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law drop. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering nuclear amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) at nonforward transferred momenta are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا