ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Image Captioning via Policy Gradient optimization of SPIDEr

85   0   0.0 ( 0 )
 نشر من قبل Siqi Liu
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Current image captioning methods are usually trained via (penalized) maximum likelihood estimation. However, the log-likelihood score of a caption does not correlate well with human assessments of quality. Standard syntactic evaluation metrics, such as BLEU, METEOR and ROUGE, are also not well correlated. The newer SPICE and CIDEr metrics are better correlated, but have traditionally been hard to optimize for. In this paper, we show how to use a policy gradient (PG) method to directly optimize a linear combination of SPICE and CIDEr (a combination we call SPIDEr): the SPICE score ensures our captions are semantically faithful to the image, while CIDEr score ensures our captions are syntactically fluent. The PG method we propose improves on the prior MIXER approach, by using Monte Carlo rollouts instead of mixing MLE training with PG. We show empirically that our algorithm leads to easier optimization and improved results compared to MIXER. Finally, we show that using our PG method we can optimize any of the metrics, including the proposed SPIDEr metric which results in image captions that are strongly preferred by human raters compared to captions generated by the same model but trained to optimize MLE or the COCO metrics.



قيم البحث

اقرأ أيضاً

Recent neural models for image captioning usually employ an encoder-decoder framework with an attention mechanism. However, the attention mechanism in such a framework aligns one single (attended) image feature vector to one caption word, assuming on e-to-one mapping from source image regions and target caption words, which is never possible. In this paper, we propose a novel attention model, namely Adaptive Attention Time (AAT), to align the source and the target adaptively for image captioning. AAT allows the framework to learn how many attention steps to take to output a caption word at each decoding step. With AAT, an image region can be mapped to an arbitrary number of caption words while a caption word can also attend to an arbitrary number of image regions. AAT is deterministic and differentiable, and doesnt introduce any noise to the parameter gradients. In this paper, we empirically show that AAT improves over state-of-the-art methods on the task of image captioning. Code is available at https://github.com/husthuaan/AAT.
The last decade has witnessed remarkable progress in the image captioning task; however, most existing methods cannot control their captions, emph{e.g.}, choosing to describe the image either roughly or in detail. In this paper, we propose to use a s imple length level embedding to endow them with this ability. Moreover, due to their autoregressive nature, the computational complexity of existing models increases linearly as the length of the generated captions grows. Thus, we further devise a non-autoregressive image captioning approach that can generate captions in a length-irrelevant complexity. We verify the merit of the proposed length level embedding on three models: two state-of-the-art (SOTA) autoregressive models with different types of decoder, as well as our proposed non-autoregressive model, to show its generalization ability. In the experiments, our length-controllable image captioning models not only achieve SOTA performance on the challenging MS COCO dataset but also generate length-controllable and diverse image captions. Specifically, our non-autoregressive model outperforms the autoregressive baselines in terms of controllability and diversity, and also significantly improves the decoding efficiency for long captions. Our code and models are released at textcolor{magenta}{texttt{https://github.com/bearcatt/LaBERT}}.
Standard image captioning tasks such as COCO and Flickr30k are factual, neutral in tone and (to a human) state the obvious (e.g., a man playing a guitar). While such tasks are useful to verify that a machine understands the content of an image, they are not engaging to humans as captions. With this in mind we define a new task, Personality-Captions, where the goal is to be as engaging to humans as possible by incorporating controllable style and personality traits. We collect and release a large dataset of 201,858 of such captions conditioned over 215 possible traits. We build models that combine existing work from (i) sentence representations (Mazare et al., 2018) with Transformers trained on 1.7 billion dialogue examples; and (ii) image representations (Mahajan et al., 2018) with ResNets trained on 3.5 billion social media images. We obtain state-of-the-art performance on Flickr30k and COCO, and strong performance on our new task. Finally, online evaluations validate that our task and models are engaging to humans, with our best model close to human performance.
What is an effective expression that draws laughter from human beings? In the present paper, in order to consider this question from an academic standpoint, we generate an image caption that draws a laugh by a computer. A system that outputs funny ca ptions based on the image caption proposed in the computer vision field is constructed. Moreover, we also propose the Funny Score, which flexibly gives weights according to an evaluation database. The Funny Score more effectively brings out laughter to optimize a model. In addition, we build a self-collected BoketeDB, which contains a theme (image) and funny caption (text) posted on Bokete, which is an image Ogiri website. In an experiment, we use BoketeDB to verify the effectiveness of the proposed method by comparing the results obtained using the proposed method and those obtained using MS COCO Pre-trained CNN+LSTM, which is the baseline and idiot created by humans. We refer to the proposed method, which uses the BoketeDB pre-trained model, as the Neural Joking Machine (NJM).
The mainstream image captioning models rely on Convolutional Neural Network (CNN) image features to generate captions via recurrent models. Recently, image scene graphs have been used to augment captioning models so as to leverage their structural se mantics, such as object entities, relationships and attributes. Several studies have noted that the naive use of scene graphs from a black-box scene graph generator harms image captioning performance and that scene graph-based captioning models have to incur the overhead of explicit use of image features to generate decent captions. Addressing these challenges, we propose textbf{SG2Caps}, a framework that utilizes only the scene graph labels for competitive image captioning performance. The basic idea is to close the semantic gap between the two scene graphs - one derived from the input image and the other from its caption. In order to achieve this, we leverage the spatial location of objects and the Human-Object-Interaction (HOI) labels as an additional HOI graph. SG2Caps outperforms existing scene graph-only captioning models by a large margin, indicating scene graphs as a promising representation for image captioning. Direct utilization of scene graph labels avoids expensive graph convolutions over high-dimensional CNN features resulting in 49% fewer trainable parameters. Our code is available at: https://github.com/Kien085/SG2Caps
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا