ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Joking Machine : Humorous image captioning

59   0   0.0 ( 0 )
 نشر من قبل Kota Yoshida
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

What is an effective expression that draws laughter from human beings? In the present paper, in order to consider this question from an academic standpoint, we generate an image caption that draws a laugh by a computer. A system that outputs funny captions based on the image caption proposed in the computer vision field is constructed. Moreover, we also propose the Funny Score, which flexibly gives weights according to an evaluation database. The Funny Score more effectively brings out laughter to optimize a model. In addition, we build a self-collected BoketeDB, which contains a theme (image) and funny caption (text) posted on Bokete, which is an image Ogiri website. In an experiment, we use BoketeDB to verify the effectiveness of the proposed method by comparing the results obtained using the proposed method and those obtained using MS COCO Pre-trained CNN+LSTM, which is the baseline and idiot created by humans. We refer to the proposed method, which uses the BoketeDB pre-trained model, as the Neural Joking Machine (NJM).

قيم البحث

اقرأ أيضاً

The last decade has witnessed remarkable progress in the image captioning task; however, most existing methods cannot control their captions, emph{e.g.}, choosing to describe the image either roughly or in detail. In this paper, we propose to use a s imple length level embedding to endow them with this ability. Moreover, due to their autoregressive nature, the computational complexity of existing models increases linearly as the length of the generated captions grows. Thus, we further devise a non-autoregressive image captioning approach that can generate captions in a length-irrelevant complexity. We verify the merit of the proposed length level embedding on three models: two state-of-the-art (SOTA) autoregressive models with different types of decoder, as well as our proposed non-autoregressive model, to show its generalization ability. In the experiments, our length-controllable image captioning models not only achieve SOTA performance on the challenging MS COCO dataset but also generate length-controllable and diverse image captions. Specifically, our non-autoregressive model outperforms the autoregressive baselines in terms of controllability and diversity, and also significantly improves the decoding efficiency for long captions. Our code and models are released at textcolor{magenta}{texttt{https://github.com/bearcatt/LaBERT}}.
Benefiting from advances in machine vision and natural language processing techniques, current image captioning systems are able to generate detailed visual descriptions. For the most part, these descriptions represent an objective characterisation o f the image, although some models do incorporate subjective aspects related to the observers view of the image, such as sentiment; current models, however, usually do not consider the emotional content of images during the caption generation process. This paper addresses this issue by proposing novel image captioning models which use facial expression features to generate image captions. The models generate image captions using long short-term memory networks applying facial features in addition to other visual features at different time steps. We compare a comprehensive collection of image captioning models with and without facial features using all standard evaluation metrics. The evaluation metrics indicate that applying facial features with an attention mechanism achieves the best performance, showing more expressive and more correlated image captions, on an image caption dataset extracted from the standard Flickr 30K dataset, consisting of around 11K images containing faces. An analysis of the generated captions finds that, perhaps unexpectedly, the improvement in caption quality appears to come not from the addition of adjectives linked to emotional aspects of the images, but from more variety in the actions described in the captions.
Recent neural models for image captioning usually employ an encoder-decoder framework with an attention mechanism. However, the attention mechanism in such a framework aligns one single (attended) image feature vector to one caption word, assuming on e-to-one mapping from source image regions and target caption words, which is never possible. In this paper, we propose a novel attention model, namely Adaptive Attention Time (AAT), to align the source and the target adaptively for image captioning. AAT allows the framework to learn how many attention steps to take to output a caption word at each decoding step. With AAT, an image region can be mapped to an arbitrary number of caption words while a caption word can also attend to an arbitrary number of image regions. AAT is deterministic and differentiable, and doesnt introduce any noise to the parameter gradients. In this paper, we empirically show that AAT improves over state-of-the-art methods on the task of image captioning. Code is available at https://github.com/husthuaan/AAT.
The mainstream image captioning models rely on Convolutional Neural Network (CNN) image features to generate captions via recurrent models. Recently, image scene graphs have been used to augment captioning models so as to leverage their structural se mantics, such as object entities, relationships and attributes. Several studies have noted that the naive use of scene graphs from a black-box scene graph generator harms image captioning performance and that scene graph-based captioning models have to incur the overhead of explicit use of image features to generate decent captions. Addressing these challenges, we propose textbf{SG2Caps}, a framework that utilizes only the scene graph labels for competitive image captioning performance. The basic idea is to close the semantic gap between the two scene graphs - one derived from the input image and the other from its caption. In order to achieve this, we leverage the spatial location of objects and the Human-Object-Interaction (HOI) labels as an additional HOI graph. SG2Caps outperforms existing scene graph-only captioning models by a large margin, indicating scene graphs as a promising representation for image captioning. Direct utilization of scene graph labels avoids expensive graph convolutions over high-dimensional CNN features resulting in 49% fewer trainable parameters. Our code is available at: https://github.com/Kien085/SG2Caps
Describing images using natural language is widely known as image captioning, which has made consistent progress due to the development of computer vision and natural language generation techniques. Though conventional captioning models achieve high accuracy based on popular metrics, i.e., BLEU, CIDEr, and SPICE, the ability of captions to distinguish the target image from other similar images is under-explored. To generate distinctive captions, a few pioneers employ contrastive learning or re-weighted the ground-truth captions, which focuses on one single input image. However, the relationships between objects in a similar image group (e.g., items or properties within the same album or fine-grained events) are neglected. In this paper, we improve the distinctiveness of image captions using a Group-based Distinctive Captioning Model (GdisCap), which compares each image with other images in one similar group and highlights the uniqueness of each image. In particular, we propose a group-based memory attention (GMA) module, which stores object features that are unique among the image group (i.e., with low similarity to objects in other images). These unique object features are highlighted when generating captions, resulting in more distinctive captions. Furthermore, the distinctive words in the ground-truth captions are selected to supervise the language decoder and GMA. Finally, we propose a new evaluation metric, distinctive word rate (DisWordRate) to measure the distinctiveness of captions. Quantitative results indicate that the proposed method significantly improves the distinctiveness of several baseline models, and achieves the state-of-the-art performance on both accuracy and distinctiveness. Results of a user study agree with the quantitative evaluation and demonstrate the rationality of the new metric DisWordRate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا