ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptively Aligned Image Captioning via Adaptive Attention Time

89   0   0.0 ( 0 )
 نشر من قبل Lun Huang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent neural models for image captioning usually employ an encoder-decoder framework with an attention mechanism. However, the attention mechanism in such a framework aligns one single (attended) image feature vector to one caption word, assuming one-to-one mapping from source image regions and target caption words, which is never possible. In this paper, we propose a novel attention model, namely Adaptive Attention Time (AAT), to align the source and the target adaptively for image captioning. AAT allows the framework to learn how many attention steps to take to output a caption word at each decoding step. With AAT, an image region can be mapped to an arbitrary number of caption words while a caption word can also attend to an arbitrary number of image regions. AAT is deterministic and differentiable, and doesnt introduce any noise to the parameter gradients. In this paper, we empirically show that AAT improves over state-of-the-art methods on the task of image captioning. Code is available at https://github.com/husthuaan/AAT.



قيم البحث

اقرأ أيضاً

Benefiting from advances in machine vision and natural language processing techniques, current image captioning systems are able to generate detailed visual descriptions. For the most part, these descriptions represent an objective characterisation o f the image, although some models do incorporate subjective aspects related to the observers view of the image, such as sentiment; current models, however, usually do not consider the emotional content of images during the caption generation process. This paper addresses this issue by proposing novel image captioning models which use facial expression features to generate image captions. The models generate image captions using long short-term memory networks applying facial features in addition to other visual features at different time steps. We compare a comprehensive collection of image captioning models with and without facial features using all standard evaluation metrics. The evaluation metrics indicate that applying facial features with an attention mechanism achieves the best performance, showing more expressive and more correlated image captions, on an image caption dataset extracted from the standard Flickr 30K dataset, consisting of around 11K images containing faces. An analysis of the generated captions finds that, perhaps unexpectedly, the improvement in caption quality appears to come not from the addition of adjectives linked to emotional aspects of the images, but from more variety in the actions described in the captions.
Describing images using natural language is widely known as image captioning, which has made consistent progress due to the development of computer vision and natural language generation techniques. Though conventional captioning models achieve high accuracy based on popular metrics, i.e., BLEU, CIDEr, and SPICE, the ability of captions to distinguish the target image from other similar images is under-explored. To generate distinctive captions, a few pioneers employ contrastive learning or re-weighted the ground-truth captions, which focuses on one single input image. However, the relationships between objects in a similar image group (e.g., items or properties within the same album or fine-grained events) are neglected. In this paper, we improve the distinctiveness of image captions using a Group-based Distinctive Captioning Model (GdisCap), which compares each image with other images in one similar group and highlights the uniqueness of each image. In particular, we propose a group-based memory attention (GMA) module, which stores object features that are unique among the image group (i.e., with low similarity to objects in other images). These unique object features are highlighted when generating captions, resulting in more distinctive captions. Furthermore, the distinctive words in the ground-truth captions are selected to supervise the language decoder and GMA. Finally, we propose a new evaluation metric, distinctive word rate (DisWordRate) to measure the distinctiveness of captions. Quantitative results indicate that the proposed method significantly improves the distinctiveness of several baseline models, and achieves the state-of-the-art performance on both accuracy and distinctiveness. Results of a user study agree with the quantitative evaluation and demonstrate the rationality of the new metric DisWordRate.
Self-attention (SA) network has shown profound value in image captioning. In this paper, we improve SA from two aspects to promote the performance of image captioning. First, we propose Normalized Self-Attention (NSA), a reparameterization of SA that brings the benefits of normalization inside SA. While normalization is previously only applied outside SA, we introduce a novel normalization method and demonstrate that it is both possible and beneficial to perform it on the hidden activations inside SA. Second, to compensate for the major limit of Transformer that it fails to model the geometry structure of the input objects, we propose a class of Geometry-aware Self-Attention (GSA) that extends SA to explicitly and efficiently consider the relative geometry relations between the objects in the image. To construct our image captioning model, we combine the two modules and apply it to the vanilla self-attention network. We extensively evaluate our proposals on MS-COCO image captioning dataset and superior results are achieved when comparing to state-of-the-art approaches. Further experiments on three challenging tasks, i.e. video captioning, machine translation, and visual question answering, show the generality of our methods.
140 - Lun Huang , Wenmin Wang , Jie Chen 2019
Attention mechanisms are widely used in current encoder/decoder frameworks of image captioning, where a weighted average on encoded vectors is generated at each time step to guide the caption decoding process. However, the decoder has little idea of whether or how well the attended vector and the given attention query are related, which could make the decoder give misled results. In this paper, we propose an Attention on Attention (AoA) module, which extends the conventional attention mechanisms to determine the relevance between attention results and queries. AoA first generates an information vector and an attention gate using the attention result and the current context, then adds another attention by applying element-wise multiplication to them and finally obtains the attended information, the expected useful knowledge. We apply AoA to both the encoder and the decoder of our image captioning model, which we name as AoA Network (AoANet). Experiments show that AoANet outperforms all previously published methods and achieves a new state-of-the-art performance of 129.8 CIDEr-D score on MS COCO Karpathy offline test split and 129.6 CIDEr-D (C40) score on the official online testing server. Code is available at https://github.com/husthuaan/AoANet.
84 - Siqi Liu , Zhenhai Zhu , Ning Ye 2016
Current image captioning methods are usually trained via (penalized) maximum likelihood estimation. However, the log-likelihood score of a caption does not correlate well with human assessments of quality. Standard syntactic evaluation metrics, such as BLEU, METEOR and ROUGE, are also not well correlated. The newer SPICE and CIDEr metrics are better correlated, but have traditionally been hard to optimize for. In this paper, we show how to use a policy gradient (PG) method to directly optimize a linear combination of SPICE and CIDEr (a combination we call SPIDEr): the SPICE score ensures our captions are semantically faithful to the image, while CIDEr score ensures our captions are syntactically fluent. The PG method we propose improves on the prior MIXER approach, by using Monte Carlo rollouts instead of mixing MLE training with PG. We show empirically that our algorithm leads to easier optimization and improved results compared to MIXER. Finally, we show that using our PG method we can optimize any of the metrics, including the proposed SPIDEr metric which results in image captions that are strongly preferred by human raters compared to captions generated by the same model but trained to optimize MLE or the COCO metrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا