ﻻ يوجد ملخص باللغة العربية
The mainstream image captioning models rely on Convolutional Neural Network (CNN) image features to generate captions via recurrent models. Recently, image scene graphs have been used to augment captioning models so as to leverage their structural semantics, such as object entities, relationships and attributes. Several studies have noted that the naive use of scene graphs from a black-box scene graph generator harms image captioning performance and that scene graph-based captioning models have to incur the overhead of explicit use of image features to generate decent captions. Addressing these challenges, we propose textbf{SG2Caps}, a framework that utilizes only the scene graph labels for competitive image captioning performance. The basic idea is to close the semantic gap between the two scene graphs - one derived from the input image and the other from its caption. In order to achieve this, we leverage the spatial location of objects and the Human-Object-Interaction (HOI) labels as an additional HOI graph. SG2Caps outperforms existing scene graph-only captioning models by a large margin, indicating scene graphs as a promising representation for image captioning. Direct utilization of scene graph labels avoids expensive graph convolutions over high-dimensional CNN features resulting in 49% fewer trainable parameters. Our code is available at: https://github.com/Kien085/SG2Caps
Many top-performing image captioning models rely solely on object features computed with an object detection model to generate image descriptions. However, recent studies propose to directly use scene graphs to introduce information about object rela
Image captioning has attracted ever-increasing research attention in the multimedia community. To this end, most cutting-edge works rely on an encoder-decoder framework with attention mechanisms, which have achieved remarkable progress. However, such
The last decade has witnessed remarkable progress in the image captioning task; however, most existing methods cannot control their captions, emph{e.g.}, choosing to describe the image either roughly or in detail. In this paper, we propose to use a s
Most of current image captioning models heavily rely on paired image-caption datasets. However, getting large scale image-caption paired data is labor-intensive and time-consuming. In this paper, we present a scene graph-based approach for unpaired i
We address the challenging problem of image captioning by revisiting the representation of image scene graph. At the core of our method lies the decomposition of a scene graph into a set of sub-graphs, with each sub-graph capturing a semantic compone