ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets

194   0   0.0 ( 0 )
 نشر من قبل Francois Boue
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Weiqing Fang




اسأل ChatGPT حول البحث

We aim at combining high coercivity magnetic nanowires in a polymer matrix in a view to fabricate rare--earth free bonded magnets. In particular, our aim is to fabricate anisotropic materials by aligning the wires in the polymer matrix. We have explored the different parameters of the fabrication process in order to produce a material with the best possible magnetic properties. We show that the choice of a proper solvent allows obtaining stable nanowire suspensions. The length and the type of the polymer chains play also an important role. Smaller chains ($M_w < 10000$) provide better magnetization results. The magnetic field applied during the casting of the material plays also a role and should be of the order of a fraction of a tesla. The local order of the nanowires in the matrix has been characterized by TEM and Small Angle Neutron Scattering. The correlation between the local order of the wires and the magnetic properties is discussed. Materials with coercivity $mu_0 H_c$ up to 0.70 $T$ at room temperature have been obtained.

قيم البحث

اقرأ أيضاً

Rare-earth-doped optical materials are important for light sources in optoelectronics, as well as for efficient optical amplification elements and other elements of photonics. On the basis of the previously developed method of anhydrous, low-temperat ure synthesis of Er/Yb oxides from their chlorides we fabricated proper nanoparticles with defined parameters and used them for the development of optically transparent, luminescent polymer nanocomposite with low optical scattering, suitable for direct, light-induced formation of photonic elements. Introduction of preformed gold nanoparticles in such a nanocomposite was also performed and an enhancement of luminescence due to the influence of plasmon effects was detected.
Nanostructured permanent magnets are gaining increasing interest and importance for applications such as generators and motors. Thermal management is a key concern since performance of permanent magnets decreases with temperature. We investigated the magnetic and thermal transport properties of rare-earth free nanostructured SrFe12O19 magnets produced by the current activated pressure assisted densification. The synthesized magnets have aligned grains such that their magnetic easy axis is perpendicular to their largest surface area to maximize their magnetic performance. The SrFe12O19 magnets have fine grain sizes in the cross-plane direction and substantially larger grain sizes in the in-plane direction. It was found that this microstructure results in approximately a factor of two higher thermal conductivity in the in-plane direction, providing an opportunity for effective cooling. The phonons are the dominant heat carriers in this type of permanent magnets near room temperature. Temperature and direction dependent thermal conductivity measurements indicate that both Umklapp and grain boundary scattering are important in the in-plane direction, where the characteristic grain size is relatively large, while grain boundary scattering dominates the cross-plane thermal transport. The investigated nano/microstructural design strategy should translate well to other material systems and thus have important implications for thermal management of nanostructured permanent magnets.
The results of measurements of XPS spectra and magnetic properties of graphene/Co composites prepared by adding of CoCl$_2$x6H$_2$O diluted in ethyl alcohol to highly-splitted graphite are presented. XPS Co 2p measurements show two sets of 2p$_{3/2,1 /2}$-lines belonging to oxidized and metallic Co-atoms. This means that metal in composite is partly oxidized. This conclusion is confirmed by magnetic measurements which show the presence of the main (from the metal) and shifted (from the oxide) hysteresis loops. The presence of oxide layer on the metal surface prevents the metal from the full oxidation and (as shown by magnetic measurements) provides the preservation of ferromagnetic properties after long exposure in ambient air which enables the use of graphene/metal composites in spintronics devices.
341 - A. Uddin , F.X. Qin , D. Estevez 2019
Traditional approaches to realize microwave tunability in microwire polymer composites which mainly rely on topological factors, magnetic field/stress stimuli, and hybridization prove to be burdensome and restricted to rather narrow band frequencies. This work presents a novel yet facile strategy based on a single component tunable medium to program the transmission response over wide frequency bands. To this end, we demonstrated that structural modification of one type of microwire through suitable current annealing and arrangement of the annealed wires in multiple combinations were sufficient to distinctly red-shift the transmission dip frequency of the composites. Such one wire control-strategy endorsed a programmable multivariable system grounded on the variations in both the overall array conductivity or effectiv area determined by the wires arrangement and the relaxation time dictated by the annealing degree of microwires. These results can be used to prescribe transmission frequency bands of desired features via diverse microwire arrays and microwave performance from a single component to a composite system design.
The maximum coercivity that can be achieved for a given hard magnetic alloy is estimated by computing the energy barrier for the nucleation of a reversed domain in an idealized microstructure without any structural defects and without any soft magnet ic secondary phases. For Sm$_{1-z}$Zr$_z$(Fe$_{1-y}$Co$_y$)$_{12-x}$Ti$_x$ based alloys, which are considered an alternative to Nd$_2$Fe$_{14}$B magnets with lower rare-earth content, the coercive field of a small magnetic cube is reduced to 60 percent of the anisotropy field at room temperature and to 50 percent of the anisotropy field at elevated temperature (473K). This decrease of the coercive field is caused by misorientation, demagnetizing fields and thermal fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا