ﻻ يوجد ملخص باللغة العربية
Nanostructured permanent magnets are gaining increasing interest and importance for applications such as generators and motors. Thermal management is a key concern since performance of permanent magnets decreases with temperature. We investigated the magnetic and thermal transport properties of rare-earth free nanostructured SrFe12O19 magnets produced by the current activated pressure assisted densification. The synthesized magnets have aligned grains such that their magnetic easy axis is perpendicular to their largest surface area to maximize their magnetic performance. The SrFe12O19 magnets have fine grain sizes in the cross-plane direction and substantially larger grain sizes in the in-plane direction. It was found that this microstructure results in approximately a factor of two higher thermal conductivity in the in-plane direction, providing an opportunity for effective cooling. The phonons are the dominant heat carriers in this type of permanent magnets near room temperature. Temperature and direction dependent thermal conductivity measurements indicate that both Umklapp and grain boundary scattering are important in the in-plane direction, where the characteristic grain size is relatively large, while grain boundary scattering dominates the cross-plane thermal transport. The investigated nano/microstructural design strategy should translate well to other material systems and thus have important implications for thermal management of nanostructured permanent magnets.
We report the results of an experimental study of thermal and magnetic properties of nanostructured ferrimagnetic iron oxide composites with graphene and graphite fillers synthesized via the current activated pressure assisted densification. The ther
We aim at combining high coercivity magnetic nanowires in a polymer matrix in a view to fabricate rare--earth free bonded magnets. In particular, our aim is to fabricate anisotropic materials by aligning the wires in the polymer matrix. We have explo
Ti-substituted perovskites, La0.7Sr0.3Mn1-xTixO3, with x between 0 to 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group
Pinning-type magnets maintaining high coercivity, i.e. the ability to sustain magnetization, at high temperature are at the core of thriving clean-energy technologies. Among these, Sm2Co17-based magnets are excellent candidates owing to their high-te
We investigated thermal properties of the epoxy-based composites with a high loading fraction - up to f=45 vol.% - of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that