ﻻ يوجد ملخص باللغة العربية
The maximum coercivity that can be achieved for a given hard magnetic alloy is estimated by computing the energy barrier for the nucleation of a reversed domain in an idealized microstructure without any structural defects and without any soft magnetic secondary phases. For Sm$_{1-z}$Zr$_z$(Fe$_{1-y}$Co$_y$)$_{12-x}$Ti$_x$ based alloys, which are considered an alternative to Nd$_2$Fe$_{14}$B magnets with lower rare-earth content, the coercive field of a small magnetic cube is reduced to 60 percent of the anisotropy field at room temperature and to 50 percent of the anisotropy field at elevated temperature (473K). This decrease of the coercive field is caused by misorientation, demagnetizing fields and thermal fluctuations.
The coercive field and angular dependence of the coercive field of single-grain Nd$_{2}$Fe$_{14}$B permanent magnets are computed using finite element micromagnetics. It is shown that the thickness of surface defects plays a critical role in determin
The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficientl
Multiscale simulation is a key research tool for the quest for new permanent magnets. Starting with first principles methods, a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density
Cobalt carbide nanoparticles were processed using polyol reduction chemistry that offers high product yields in a cost effective single-step process. Particles are shown to be acicular in morphology and typically assembled as clusters with room tempe
Based on high-throughput density functional theory calculations, we investigated the effects of light interstitial H, B, C, and N atoms on the magnetic properties of cubic Heusler alloys, with the aim to design new rare-earth free permanent magnets.