ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale Chemical Evolution of Silicon Negative Electrodes Characterized by Low-Loss STEM-EELS

110   0   0.0 ( 0 )
 نشر من قبل Pascale Bayle-Guillemaud
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maxime Boniface




اسأل ChatGPT حول البحث

Continuous solid electrolyte interface (SEI) formation remains the limiting factor of the lifetime of silicon nanoparticles (SiNPs) based negative electrodes. Methods that could provide clear diagnosis of the electrode degradation are of utmost necessity to streamline further developments. We demonstrate that electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) can be used to quickly map SEI components and quantify LixSi alloys from single experiments, with resolutions down to 5 nm. Exploiting the low-loss part of the EEL spectrum allowed us to circumvent the degradation phenomena that have so far crippled the application of this technique on such beam-sensitive compounds. Our results provide unprecedented insight into silicon aging mechanisms in full cell configuration. We observe the morphology of the SEI to be extremely heterogeneous at the particle scale but with clear chemical evolutions with extended cycling coming from both SEI accumulation and a transition from lithium-rich carbonate-like compounds to lithium-poor ones. Thanks to the retrieval of several results from a single dataset, we were able to correlate local discrepancies in lithiation to the initial crystallinity of silicon as well as to the local SEI chemistry and morphology. This study emphasizes how initial heterogeneities in the percolating electronic network and the porosity affect SiNPs aggregates along cycling. These findings pinpoint the crucial role of an optimized formulation in silicon-based thick electrodes.



قيم البحث

اقرأ أيضاً

Electrodes in close proximity to an active area of a device are required for sufficient electrical control. The integration of such electrodes into optical devices can be challenging since low optical losses must be retained to realise high quality o peration. Here, we demonstrate that it is possible to place a metallic shallow phosphorus doped layer in a silicon micro-ring cavity that can function at cryogenic temperatures. We verify that the shallow doping layer affects the local refractive index while inducing minimal losses with quality factors up to 10$^5$. This demonstration opens up a pathway to the integration of an electronic device, such as a single-electron transistor, into an optical circuit on the same material platform.
In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium di-silicide (CaSi2). We have used a combination of X-ray photoelectron spectroscopy, transmission elect ron microscopy and Energy-dispersive X-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a 2-dimensional hexagonal graphitic structure.
Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single photon emission, good photostability, and long spin coherence time even at room temperature. As compared to diam ond which is widely used for holding Nitrogen-vacancy centers, SiC has the advantage in terms of large-scale, high-quality and low cost growth, as well as advanced fabrication technique in optoelectronics, leading to the prospects for large scale quantum engineering. In this paper, we report experimental demonstration of the generation of nanoscale $V_{Si}$ single defect array through ion implantation without the need of annealing. $V_{Si}$ defects are generated in pre-determined locations with resolution of tens of nanometers. This can help in integrating $V_{Si}$ defects with the photonic structures which, in turn, can improve the emission and collection efficiency of $V_{Si}$ defects when it is used in spin photonic quantum network. On the other hand, the defects are shallow and they are generated $sim 40nm$ below the surface which can serve as critical resources in quantum sensing application.
This paper discusses the reconstruction of partially sampled spectrum-images to accelerate the acquisition in scanning transmission electron microscopy (STEM). The problem of image reconstruction has been widely considered in the literature for many imaging modalities, but only a few attempts handled 3D data such as spectral images acquired by STEM electron energy loss spectroscopy (EELS). Besides, among the methods proposed in the microscopy literature, some are fast but inaccurate while others provide accurate reconstruction but at the price of a high computation burden. Thus none of the proposed reconstruction methods fulfills our expectations in terms of accuracy and computation complexity. In this paper, we propose a fast and accurate reconstruction method suited for atomic-scale EELS. This method is compared to popular solutions such as beta process factor analysis (BPFA) which is used for the first time on STEM-EELS images. Experiments based on real as synthetic data will be conducted.
We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing a temperature dependent shift of the SiV optical zero-phonon line transition frequency, $Deltalambda/Delta T= 6.8,mathrm{GHz/K}$. Using SiVs in bulk diamond, we achieve $70,mathrm{mK}$ precision at room temperature with a sensitivity of $360,mathrm{mK/sqrt{Hz}}$. Finally, we use SiVs in $200,mathrm{nm}$ nanodiamonds as local temperature probes with $521,mathrm{ mK/sqrt{Hz}}$ sensitivity. These results open up new possibilities for nanoscale thermometry in biology, chemistry, and physics, paving the way for control of complex nanoscale systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا