ترغب بنشر مسار تعليمي؟ اضغط هنا

Silicon Sheets By Redox Assisted Chemical Exfoliation

325   0   0.0 ( 0 )
 نشر من قبل Hamid Oughaddou
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium di-silicide (CaSi2). We have used a combination of X-ray photoelectron spectroscopy, transmission electron microscopy and Energy-dispersive X-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a 2-dimensional hexagonal graphitic structure.



قيم البحث

اقرأ أيضاً

The scalable and high-efficiency production of two-dimensional (2D) materials is a prerequisite to their commercial use. Currently, only graphene and graphene oxide can be produced on a ton scale, and the inability to produce other 2D materials on su ch a large scale hinders their technological applications. Here we report a grinding exfoliation method that uses micro-particles as force intermediates to resolve applied compressive forces into a multitude of small shear forces, inducing the highly-efficient exfoliation of layer materials. The method, referred to as intermediate-assisted grinding exfoliation (iMAGE), can be used for the large-scale production of many 2D materials. As an example, we have exfoliated bulk h-BN into 2D h-BN with large flake sizes, high quality and structural integrity, with a high exfoliation yield of 67%, a high production rate of 0.3 g h-1 and a low energy consumption of 3.01x10^6 J g-1. The production rate and energy consumption are one to two orders of magnitude better than previous results. Besides h-BN, this iMAGE technology has been used to exfoliate various layer materials such as graphite, black phosphorus, transition metal dichalcogenides, and metal oxides, proving its universality. Molybdenite concentrate, a natural low-cost and abundant mineral, was used as a demo for the large-scale exfoliation production of 2D MoS2 flakes. Our work indicates the huge potential of the iMAGE method to produce large amounts of various 2D materials, which paves the way for their commercial application.
The reversibility and cyclability of anionic redox in battery electrodes hold the key to its practical employments. Here, through mapping of resonant inelastic X-ray scattering (mRIXS), we have independently quantified the evolving redox states of bo th cations and anions in Na2/3Mg1/3Mn2/3O2. The bulk-Mn redox emerges from initial discharge and is quantified by inverse-partial fluorescence yield (iPFY) from Mn-L mRIXS. Bulk and surface Mn activities likely lead to the voltage fade. O-K super-partial fluorescence yield (sPFY) analysis of mRIXS shows 79% lattice oxygen-redox reversibility during initial cycle, with 87% capacity sustained after 100 cycles. In Li1.17Ni0.21Co0.08Mn0.54O2, lattice-oxygen redox is 76% initial-cycle reversible but with only 44% capacity retention after 500 cycles. These results unambiguously show the high reversibility of lattice-oxygen redox in both Li-ion and Na-ion systems. The contrast between Na2/3Mg1/3Mn2/3O2 and Li1.17Ni0.21Co0.08Mn0.54O2 systems suggests the importance of distinguishing lattice-oxygen redox from other oxygen activities for clarifying its intrinsic properties.
109 - Maxime Boniface 2016
Continuous solid electrolyte interface (SEI) formation remains the limiting factor of the lifetime of silicon nanoparticles (SiNPs) based negative electrodes. Methods that could provide clear diagnosis of the electrode degradation are of utmost neces sity to streamline further developments. We demonstrate that electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) can be used to quickly map SEI components and quantify LixSi alloys from single experiments, with resolutions down to 5 nm. Exploiting the low-loss part of the EEL spectrum allowed us to circumvent the degradation phenomena that have so far crippled the application of this technique on such beam-sensitive compounds. Our results provide unprecedented insight into silicon aging mechanisms in full cell configuration. We observe the morphology of the SEI to be extremely heterogeneous at the particle scale but with clear chemical evolutions with extended cycling coming from both SEI accumulation and a transition from lithium-rich carbonate-like compounds to lithium-poor ones. Thanks to the retrieval of several results from a single dataset, we were able to correlate local discrepancies in lithiation to the initial crystallinity of silicon as well as to the local SEI chemistry and morphology. This study emphasizes how initial heterogeneities in the percolating electronic network and the porosity affect SiNPs aggregates along cycling. These findings pinpoint the crucial role of an optimized formulation in silicon-based thick electrodes.
Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial application s. In this work we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and different types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including post-processing. Under specific conditions, formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.
Ammonia (NH3) is commonly used as group V precursor in gallium nitride (GaN) metalorganic chemical vapor deposition (MOCVD). The high background carbon (C) impurity in MOCVD GaN is related to the low pyrolysis efficiency of NH3, which represents one of the fundamental challenges hindering the development of high purity thick GaN for vertical high power device applications. This work uses a laser-assisted MOCVD (LA-MOCVD) growth technique to address the high-C issue in MOCVD GaN. Carbon dioxide (CO2) laser with wavelength of 9.219 um was utilized to facilitate NH3 decomposition via resonant vibrational excitation. The LA-MOCVD GaN growth rate (as high as 10 um/hr) shows a strong linear relationship with the trimethylgallium (TMGa) flow rate, indicating high effective V/III ratios and hence efficient NH3 decomposition. Pits-free surface morphology of LA-MOCVD GaN was demonstrated for films with growth rate as high as 8.5 um/hr. The background [C] in LA-MOCVD GaN films decreases monotonically as the laser power increases. A low [C] at 5.5E15 cm-3 was achieved in LA-MOCVD GaN film grown with the growth rate of 4 um/hr. Charge transport characterization of LA-MOCVD GaN films reveals high crystalline quality with room temperature mobility >1000 cm2/Vs. LA-MOCVD growth technique provides an enabling route to achieve high quality GaN epitaxy with low-C impurity and fast growth rate simultaneously. This technique can also be extended for epitaxy of other nitride-based semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا