ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical nanoscale thermometry with silicon-vacancy centers in diamond

138   0   0.0 ( 0 )
 نشر من قبل Christian Nguyen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing a temperature dependent shift of the SiV optical zero-phonon line transition frequency, $Deltalambda/Delta T= 6.8,mathrm{GHz/K}$. Using SiVs in bulk diamond, we achieve $70,mathrm{mK}$ precision at room temperature with a sensitivity of $360,mathrm{mK/sqrt{Hz}}$. Finally, we use SiVs in $200,mathrm{nm}$ nanodiamonds as local temperature probes with $521,mathrm{ mK/sqrt{Hz}}$ sensitivity. These results open up new possibilities for nanoscale thermometry in biology, chemistry, and physics, paving the way for control of complex nanoscale systems.



قيم البحث

اقرأ أيضاً

We characterize a high-density sample of negatively charged silicon-vacancy (SiV$^-$) centers in diamond using collinear optical multidimensional coherent spectroscopy. By comparing the results of complementary signal detection schemes, we identify a hidden population of ce{SiV^-} centers that is not typically observed in photoluminescence, and which exhibits significant spectral inhomogeneity and extended electronic $T_2$ times. The phenomenon is likely caused by strain, indicating a potential mechanism for controlling electric coherence in color-center-based quantum devices.
Quantum emitters are an integral component for a broad range of quantum technologies including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum o ptics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single photon generation and photon mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime where the excited state lifetime is dominated by spontaneous emission into the cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited state energy decay occurring through spontaneous emission into the cavity mode. We also demonstrate the largest to date coupling strength ($g/2pi=4.9pm0.3 GHz$) and cooperativity ($C=1.4$) for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.
340 - E. Poem , C. Weinzetl , J. Klatzow 2014
It is proposed that the ground-state manifold of the neutral nitrogen-vacancy center in diamond could be used as a quantum two-level system in a solid-state-based implementation of a broadband, noise-free quantum optical memory. The proposal is based on the same-spin $Lambda$-type three-level system created between the two E orbital ground states and the A$_1$ orbital excited state of the center, and the cross-linear polarization selection rules obtained with the application of transverse electric field or uniaxial stress. Possible decay and decoherence mechanisms of this system are discussed, and it is shown that high-efficiency, noise-free storage of photons as short as a few tens of picoseconds for at least a few nanoseconds could be possible at low temperature.
The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are promising fluorophores for STED microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. A home-built pulsed STED microscope was used to image shallow implanted SiV centers in bulk diamond at room temperature. The SiV stimulated emission cross section for 765-800 nm light is found to be (4.0 +/- 0.3) x 10^(-17) cm^2, which is approximately 2-4 times larger than that of the negatively-charged diamond nitrogen vacancy center and approaches that of commonly-used organic dye molecules. We performed STED microscopy on isolated SiV centers and observed a lateral full-width-at-half-maximum spot size of 89 +/- 2 nm, limited by the low available STED laser pulse energy (0.4 nJ). For a pulse energy of 5 nJ, the resolution is expected to be ~20 nm. We show that the present microscope can resolve SiV centers separated by <150 nm that cannot be resolved by confocal microscopy.
Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processin g, communication, and control. Specifically, significant progress has been made in the field of hybrid mechanical devices, in which a qubit is coupled to a mechanical oscillator. Strong coupling in such devices has been demonstrated with superconducting qubits, and coupling defect qubits to mechanical elements via crystal strain has enabled novel methods of qubit measurement and control. In this paper we demonstrate the fabrication of diamond optomechanical crystals with embedded nitrogen-vacancy (NV) centers, a preliminary step toward reaching the quantum regime with defect qubit hybrid mechanical devices. We measure optical and mechanical resonances of diamond optomechanical crystals as well as the spin coherence of single embedded NV centers. We find that the spin has long coherence times $T_2^* = 1.5 mu s$ and $T_2 = 72 mu s$ despite its proximity to nanofabricated surfaces. Finally, we discuss potential improvements of these devices and prospects for future experiments in the quantum regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا