ﻻ يوجد ملخص باللغة العربية
A broadcast on a graph $G=(V,E)$ is a function $f:V rightarrow {0,1, ldots, text{diam}(G)}$ satisfying $f(v) leq e(v)$ for all $v in V$, where $e(v)$ denotes the eccentricity of $v$ and $text{diam}(G)$ denotes the diameter of $G$. We say that a broadcast dominates $G$ if every vertex can hear at least one broadcasting node. The upper domination number is the maximum cost of all possible minimal broadcasts, where the cost of a broadcast is defined as $text{cost} (f)= sum_{v in V}f(v)$. In this paper we establish both the upper domination number and the upper broadcast domination number on toroidal grids. In addition, we classify all diametrical trees, that is, trees whose upper domination number is equal to its diameter.
The domination number of a graph $G = (V,E)$ is the minimum cardinality of any subset $S subset V$ such that every vertex in $V$ is in $S$ or adjacent to an element of $S$. Finding the domination numbers of $m$ by $n$ grids was an open problem for ne
A dominating set of a graph $G$ is a set of vertices that contains at least one endpoint of every edge on the graph. The domination number of $G$ is the order of a minimum dominating set of $G$. The $(t,r)$ broadcast domination is a generalization of
Let $G=( V(G), E(G) )$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. We say a subset $D$ of $V(G)$ dominates $G$ if every vertex in $V setminus D$ is adjacent to a vertex in $D$. A generalization of this concept is $(t,r)$ broadcas
Let $ G $ be a graph. A subset $S subseteq V(G) $ is called a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $S$. The total domination number, $gamma_{t}$($G$), is the minimum cardinality of a total dominating set o
A set $D$ of vertices of a graph $G$ is a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $D$. The total domination number of $G$ is the minimum cardinality of any total dominating set of $G$ and is denoted by $gamma