ﻻ يوجد ملخص باللغة العربية
The domination number of a graph $G = (V,E)$ is the minimum cardinality of any subset $S subset V$ such that every vertex in $V$ is in $S$ or adjacent to an element of $S$. Finding the domination numbers of $m$ by $n$ grids was an open problem for nearly 30 years and was finally solved in 2011 by Goncalves, Pinlou, Rao, and Thomasse. Many variants of domination number on graphs have been defined and studied, but exact values have not yet been obtained for grids. We will define a family of domination theories parameterized by pairs of positive integers $(t,r)$ where $1 leq r leq t$ which generalize domination and distance domination theories for graphs. We call these domination numbers the $(t,r)$ broadcast domination numbers. We give the exact values of $(t,r)$ broadcast domination numbers for small grids, and we identify upper bounds for the $(t,r)$ broadcast domination numbers for large grids and conjecture that these bounds are tight for sufficiently large grids.
A dominating set of a graph $G$ is a set of vertices that contains at least one endpoint of every edge on the graph. The domination number of $G$ is the order of a minimum dominating set of $G$. The $(t,r)$ broadcast domination is a generalization of
Let $G=( V(G), E(G) )$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. We say a subset $D$ of $V(G)$ dominates $G$ if every vertex in $V setminus D$ is adjacent to a vertex in $D$. A generalization of this concept is $(t,r)$ broadcas
A broadcast on a graph $G=(V,E)$ is a function $f:V rightarrow {0,1, ldots, text{diam}(G)}$ satisfying $f(v) leq e(v)$ for all $v in V$, where $e(v)$ denotes the eccentricity of $v$ and $text{diam}(G)$ denotes the diameter of $G$. We say that a broad
Let $mathcal{H}$ be a hypergraph on a finite set $V$. A {em cover} of $mathcal{H}$ is a set of vertices that meets all edges of $mathcal{H}$. If $W$ is not a cover of $mathcal{H}$, then $W$ is said to be a {em noncover} of $mathcal{H}$. The {em nonco
The concept of power domination emerged from the problem of monitoring electrical systems. Given a graph G and a set S $subseteq$ V (G), a set M of monitored vertices is built as follows: at first, M contains only the vertices of S and their direct n