ﻻ يوجد ملخص باللغة العربية
A dominating set of a graph $G$ is a set of vertices that contains at least one endpoint of every edge on the graph. The domination number of $G$ is the order of a minimum dominating set of $G$. The $(t,r)$ broadcast domination is a generalization of domination in which a set of broadcasting vertices emits signals of strength $t$ that decrease by 1 as they traverse each edge, and we require that every vertex in the graph receives a cumulative signal of at least $r$ from its set of broadcasting neighbors. In this paper, we extend the study of $(t,r)$ broadcast domination to directed graphs. Our main result explores the interval of values obtained by considering the directed $(t,r)$ broadcast domination numbers of all orientations of a graph $G$. In particular, we prove that in the cases $r=1$ and $(t,r) = (2,2)$, for every integer value in this interval, there exists an orientation $vec{G}$ of $G$ which has directed $(t,r)$ broadcast domination number equal to that value. We also investigate directed $(t,r)$ broadcast domination on the finite grid graph, the star graph, the infinite grid graph, and the infinite triangular lattice graph. We conclude with some directions for future study.
Let $G=( V(G), E(G) )$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. We say a subset $D$ of $V(G)$ dominates $G$ if every vertex in $V setminus D$ is adjacent to a vertex in $D$. A generalization of this concept is $(t,r)$ broadcas
The domination number of a graph $G = (V,E)$ is the minimum cardinality of any subset $S subset V$ such that every vertex in $V$ is in $S$ or adjacent to an element of $S$. Finding the domination numbers of $m$ by $n$ grids was an open problem for ne
Given a graph $G$, a dominating set of $G$ is a set $S$ of vertices such that each vertex not in $S$ has a neighbor in $S$. The domination number of $G$, denoted $gamma(G)$, is the minimum size of a dominating set of $G$. The independent domination n
In this paper, we study the domination number of middle graphs. Indeed, we obtain tight bounds for this number in terms of the order of the graph. We also compute the domination number of some families of graphs such as star graphs, double start grap
In combinatorics, a latin square is a $ntimes n$ matrix filled with n different symbols, each occurring exactly once in each row and exactly once in each column. Associated to each latin square, we can define a simple graph called a latin square grap