ﻻ يوجد ملخص باللغة العربية
We find a series of topological phase transitions in a half-metal/superconductor heterostructure, by tuning the direction of the magnetization of the half-metal film. These include transitions between a topological superconducting phase with a bulk gap and another phase without a bulk gap but has a ubiquitous local gap. At the same time, the edge states change from counter-propagating Majorana edge modes to unidirectional Majorana edge modes. In addition, we find transitions between the second phase and a nodal phase which turns out to be a two-dimensional Weyl superconductor with Fermi line edge states. We identify the topological invariants relevant to each phase and the symmetry that protects the Weyl superconductivity phase.
A zero-temperature magnetic-field-driven superconductor to insulator transition (SIT) in quasi-two-dimensional superconductors is expected to occur when the applied magnetic-field crosses a certain critical value. A fundamental question is whether th
Two-dimensional (2D) materials are not expected to be metals at low temperature due to electron localization. Consistent with this, pioneering studies on thin films reported only superconducting and insulating ground states, with a direct transition
The quasi-two-dimensional organic superconductor beta-(BEDT-TTF)_2SF_5CH_2CF_2SO_3 (T_c approx 4.4 K)shows very strong Shubnikov-de Haas (SdH) oscillations which are superimposed on a highly anomalous steady background magnetoresistance, R_b. Compari
We use ionic liquid-assisted electric field effect to tune the carrier density in an electron-doped cuprate ultrathin film and cause a two-dimensional superconductor-insulator transition (SIT). The low upper critical field in this system allows us to
Superconductivity in Dirac electrons has recently been proposed as a new platform between novel concepts in high-energy and condensed matter physics. It has been proposed that supersymmetry and exotic quasiparticles, both of which remain elusive in p