ﻻ يوجد ملخص باللغة العربية
We use ionic liquid-assisted electric field effect to tune the carrier density in an electron-doped cuprate ultrathin film and cause a two-dimensional superconductor-insulator transition (SIT). The low upper critical field in this system allows us to perform magnetic field (B)-induced SIT in the liquid-gated superconducting film. Finite-size scaling analysis indicates that SITs induced both by electric and magnetic field are quantum phase transitions and the transitions are governed by percolation effects - quantum mechanical in the former and classical in the latter case. Compared to the hole-doped cuprates, the SITs in electron-doped system occur at critical sheet resistances (Rc) much lower than the pair quantum resistance RQ=h/(2e)2=6.45 k{Omega}, suggesting the possible existence of fermionic excitations at finite temperature at the insulating phase near SITs.
A zero-temperature magnetic-field-driven superconductor to insulator transition (SIT) in quasi-two-dimensional superconductors is expected to occur when the applied magnetic-field crosses a certain critical value. A fundamental question is whether th
The tunneling spectra of the electron-doped cuprate Pr_2-xCe_xCuO4 as a function of doping and temperature is reported. We find that the superconducting gap, delta, shows a BCS-like temperature dependence even for extremely low carrier concentrations
We report on measurements of the in-plane magnetic penetration depth lambda_{ab} in the infinite-layer electron-doped high-temperature cuprate superconductor Sr_0.9La_0.1CuO_2 by means of muon-spin rotation. The observed temperature and magnetic fiel
An antiferromagnetic (AF) spin fluctuation induced pairing model is proposed for the electron-doped cuprate superconductors. It suggests that, similar to the hole-doped side, the superconducting gap function is monotonic d_{x^2-y^2}-wave and explains
High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importanc