ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential superconductor-Bose insulator-Fermi insulator phase transitions in two-dimensional a-WSi

103   0   0.0 ( 0 )
 نشر من قبل Xiaofu Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A zero-temperature magnetic-field-driven superconductor to insulator transition (SIT) in quasi-two-dimensional superconductors is expected to occur when the applied magnetic-field crosses a certain critical value. A fundamental question is whether this transition is due to the localization of Cooper pairs or due to the destruction of them. Here we address this question by studying the SIT in amorphous WSi. Transport measurements reveal the localization of Cooper pairs at a quantum critical field B_c^1 (Bose-insulator), with a product of the correlation length and dynamical exponents zv~4/3 near the quantum critical point (QCP). Beyond B_c^1, superconducting fluctuations still persist at finite temperatures. Above a second critical field B_c^2>B_c^1, the Cooper pairs are destroyed and the film becomes a Fermi-insulator. The different phases all merge at a tricritical point at finite temperatures with zv=2/3. Our results suggest a sequential superconductor to Bose insulator to Fermi insulator phase transition, which differs from the conventional scenario involving a single quantum critical point.

قيم البحث

اقرأ أيضاً

92 - S. W. Zeng , Z. Huang , W. M. Lv 2015
We use ionic liquid-assisted electric field effect to tune the carrier density in an electron-doped cuprate ultrathin film and cause a two-dimensional superconductor-insulator transition (SIT). The low upper critical field in this system allows us to perform magnetic field (B)-induced SIT in the liquid-gated superconducting film. Finite-size scaling analysis indicates that SITs induced both by electric and magnetic field are quantum phase transitions and the transitions are governed by percolation effects - quantum mechanical in the former and classical in the latter case. Compared to the hole-doped cuprates, the SITs in electron-doped system occur at critical sheet resistances (Rc) much lower than the pair quantum resistance RQ=h/(2e)2=6.45 k{Omega}, suggesting the possible existence of fermionic excitations at finite temperature at the insulating phase near SITs.
81 - J. Wosnitza 2000
The quasi-two-dimensional organic superconductor beta-(BEDT-TTF)_2SF_5CH_2CF_2SO_3 (T_c approx 4.4 K)shows very strong Shubnikov-de Haas (SdH) oscillations which are superimposed on a highly anomalous steady background magnetoresistance, R_b. Compari son with de Haas- van Alphen oscillations allow a reliable estimate of R_b which is crucial for the correct extraction of the SdH signal. At low temperatures and high magnetic fields insulating behavior evolves. The magnetoresistance data violate Kohlers rule, i.e., cannot be described within the framework of semiclassical transport theory, but converge onto a universal curve appropriate for dynamical scaling at a metal-insulator transition.
124 - Lei Hao , C. S. Ting 2016
We find a series of topological phase transitions in a half-metal/superconductor heterostructure, by tuning the direction of the magnetization of the half-metal film. These include transitions between a topological superconducting phase with a bulk g ap and another phase without a bulk gap but has a ubiquitous local gap. At the same time, the edge states change from counter-propagating Majorana edge modes to unidirectional Majorana edge modes. In addition, we find transitions between the second phase and a nodal phase which turns out to be a two-dimensional Weyl superconductor with Fermi line edge states. We identify the topological invariants relevant to each phase and the symmetry that protects the Weyl superconductivity phase.
We study the two-dimensional superconductor-insulator transition (SIT) in thin films of tantalum nitride. At zero magnetic field, films can be disorder-tuned across the SIT by adjusting thickness and film stoichiometry; insulating films exhibit class ical hopping transport. Superconducting films exhibit a magnetic field-tuned SIT, whose insulating ground state at high field appears to be a quantum-corrected metal. Scaling behavior at the field-tuned SIT shows classical percolation critical exponents $z u approx$ 1.3, with a corresponding critical field $H_c ll H_{c2}$. The Hall effect shows a crossing point near $H_c$, but with a non-universal critical value $rho_{xy}^c$ comparable to the normal state Hall resistivity. We propose that high-carrier density metals will always exhibit this pattern of behavior at the boundary between superconducting and (trivially) insulating ground states.
We have studied the thickness-induced superconductor-to-insulator transition in the presence of a magnetic field for a-NbSi thin films. Analyzing the critical behavior of this system within the dirty boson model, we have found a critical exponents pr oduct of $ u_d z$ > 0.4. The corresponding phase diagram in the (H,d) plane is inferred. This small exponent product as well as the non-universal value of the critical resistance found at the transition call for further investigations in order to thoroughly understand these transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا