ﻻ يوجد ملخص باللغة العربية
Superconductivity in Dirac electrons has recently been proposed as a new platform between novel concepts in high-energy and condensed matter physics. It has been proposed that supersymmetry and exotic quasiparticles, both of which remain elusive in particle physics, may be realized as emergent particles in superconducting Dirac electron systems. Using artificially fabricated topological insulator-superconductor heterostructures, we present direct spectroscopic evidence for the existence of Cooper pairing in a half Dirac gas 2D topological superconductor. Our studies reveal that superconductivity in a helical Dirac gas is distinctly different from that of in an ordinary two-dimensional superconductor while considering the spin degrees of freedom of electrons. We further show that the pairing of Dirac electrons can be suppressed by time-reversal symmetry breaking impurities removing the distinction. Our demonstration and momentum-space imaging of Cooper pairing in a half Dirac gas and its magnetic behavior taken together serve as a critically important 2D topological superconductor platform for future testing of novel fundamental physics predictions such as emergent supersymmetry and quantum criticality in topological systems.
We find a series of topological phase transitions in a half-metal/superconductor heterostructure, by tuning the direction of the magnetization of the half-metal film. These include transitions between a topological superconducting phase with a bulk g
Realization of topological superconductors (TSCs) hosting Majorana fermions is a central challenge in condensed-matter physics. One approach is to use the superconducting proximity effect (SPE) in heterostructures, where a topological insulator conta
We report superconductivity in the ternary half-Heusler compound LuPtBi, with Tc = 1.0 K and Hc2 = 1.6 T. The crystal structure of LuPtBi lacks inversion symmetry, hence the material is a noncentrosymmetric superconductor. Magnetotransport data show
We investigate the bulk orbital angular momentum (AM) in a two-dimensional hole-doped topological superconductor (SC) which is composed of a hole-doped semiconductor thin film, a magnetic insulator, and an $s$-wave SC and is characterized by the Cher
We investigate the topological aspect of the spin-triplet $f$-wave superconductor UPt$_3$ through microscopic calculations of edge- and vortex-bound states based on the quasiclassical Eilenberger and Bogoliubov-de Gennes theories. It is shown that a