ﻻ يوجد ملخص باللغة العربية
Quantum systems driven by strong oscillating fields are the source of many interesting physical phenomena. In this work, we experimentally study the dynamics of a two-level system of a single spin driven in the strong-driving regime where the rotating-wave approximation is not valid. This two-level system is a subsystem of a single Nitrogen-Vacancy center coupled to a first-shell $^{13}$C nuclear spin in diamond at a level anti-crossing point that occurs in the $m_{s}=pm1$ manifold when the energy level splitting between the $m_{s}$ = $+1$ and $-1$ spin states due to the static magnetic field is $approx$ 127 MHz, which is roughly equal to the spectral splitting due to the $^{13}$C hyperfine interaction. The transition frequency of this electron spin two-level system in a static magnetic field of 28.9 G is 1.7 MHz and it can be driven only by the $z$-component of the RF field. Electron spin Rabi frequencies in this system can reach tens of MHz even for moderate RF powers. The simple sinusoidal Rabi oscillations that occur when the amplitude of the driving field is much smaller than the transition frequency become complex when the driving field strength is comparable or greater than the energy level splitting. We observe that the system oscillates faster than the amplitude of the driving field and the response of the system shows multiple frequencies.
Two noninteracting atoms, initially entangled in Bell states, are coupled to a one-mode cavity. Based on the reduced non-perturbative quantum master equation, the entanglement evolution of the two atoms with decay is investigated beyond rotating-wave
Here we use perturbation techniques based on the averaging method to investigate Rabi oscillations in cw and pulse-driven two-level systems (TLSs). By going beyond the rotating-wave approximation, especifically to second-order in perturbation, we obt
The entanglement dynamics of two remote qubits is examined analytically. The qubits interact arbitrarily strongly with separate harmonic oscillators in the idealized degenerate limit of the Jaynes-Cummings Hamiltonian. In contrast to well known non-d
We apply a full-polaron master equation and a weak-coupling non-Markovian master equation to describe the steady-state time-averaged properties of a driven two-level system, an electron coherently tunneling between double quantum dots (DQDs), interac
We present a recursive formula for the computation of the static effective Hamiltonian of a system under a fast-oscillating drive. Our result is well-suited to symbolic calculations performed by a computer and can be implemented to arbitrary order, t