ﻻ يوجد ملخص باللغة العربية
Here we use perturbation techniques based on the averaging method to investigate Rabi oscillations in cw and pulse-driven two-level systems (TLSs). By going beyond the rotating-wave approximation, especifically to second-order in perturbation, we obtain the Bloch-Siegert shift of the TLS resonant frequency, in which the resonant frequency increases with the driving field amplitude. This frequency shift implies that short resonant $pi$-pulses in which the Rabi frequency is approximately 40% or higher of the transition frequency do not achieve complete inversion in TLSs. Hence, guided by analytical results based on the averaging technique, we propose two methods for obtaining population
We present an analytical method for the two-qubit quantum Rabi model. While still operating in the frame of the generalized rotating-wave approximation (GRWA), our method further embraces the idea of introducing variational parameters. The optimal va
Quantum systems driven by strong oscillating fields are the source of many interesting physical phenomena. In this work, we experimentally study the dynamics of a two-level system of a single spin driven in the strong-driving regime where the rotatin
We study the dynamics of two qubits interacting with a single mode of a harmonic oscillator beyond the rotating wave approximation in the ideally degenerate regime. Exact analytic expressions are obtained for state properties of interest, including q
The entanglement dynamics of two remote qubits is examined analytically. The qubits interact arbitrarily strongly with separate harmonic oscillators in the idealized degenerate limit of the Jaynes-Cummings Hamiltonian. In contrast to well known non-d
Environmental influences on the dynamics of a coupled qubit-oscillator system are studied analytically. We investigate the case of a quasi-degenerate qubit within the ultra-strong coupling regime for which the qubit frequency is much smaller than the