ﻻ يوجد ملخص باللغة العربية
We apply a full-polaron master equation and a weak-coupling non-Markovian master equation to describe the steady-state time-averaged properties of a driven two-level system, an electron coherently tunneling between double quantum dots (DQDs), interacting with a bosonic phonon bath. Comparing the results obtained using these two master equations with those from a recent DQD experiment and its corresponding weak-coupling theoretical method, we find that the original parameter set used in the experiment and theoretical method is not in the weak-coupling parameter regime. By using the full-polaron master equation with a slight adjustment on only the value of the interdot separation in the original experimental parameter set, we find that a reasonable fit to the experimentally measured time-averaged steady-state population data can be achieved. The adjusted interdot separation is within the possible values allowed by the geometry of the surface gates that define the DQD in the experiment. Our full-polaron equation approach does not require the special renormalization scheme employed in their weak-coupling theoretical method, and can still describe the experimental results of driving-induced phonon-enhanced steplike shoulder behaviors in the experiment. This demonstrates that the full-polaron master equation approach is a correct and efficient tool to describe the steady-state properties of a driven spin-boson model in the case of strong system-environment coupling.
Quantum systems driven by strong oscillating fields are the source of many interesting physical phenomena. In this work, we experimentally study the dynamics of a two-level system of a single spin driven in the strong-driving regime where the rotatin
We present a detailed microscopic derivation for a non-Markovian master equation for a driven two-state system interacting with a general structured reservoir. The master equation is derived using the time-convolutionless projection operator techniqu
The recently developed technique combining the weak coupling limit with the Floquet formalism is applied to a model of two-level atom driven by a strong laser field and weakly coupled to heat baths. Firstly, the case of a single electromagnetic bath
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the in
We study the long-time average of the reduced density matrix (RDM) of a two-level system as the central system, which is locally coupled to a generic many-body quantum chaotic system as the environment, under an overall Schr{o}dinger evolution. The s