ﻻ يوجد ملخص باللغة العربية
Two noninteracting atoms, initially entangled in Bell states, are coupled to a one-mode cavity. Based on the reduced non-perturbative quantum master equation, the entanglement evolution of the two atoms with decay is investigated beyond rotating-wave approximation. It is shown that the counter-rotating wave terms have great influence on the disentanglement behavior. The phenomenon of entanglement sudden death and entanglement sudden birth will occur.
The entanglement dynamics of two remote qubits is examined analytically. The qubits interact arbitrarily strongly with separate harmonic oscillators in the idealized degenerate limit of the Jaynes-Cummings Hamiltonian. In contrast to well known non-d
Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if t
Quantum systems driven by strong oscillating fields are the source of many interesting physical phenomena. In this work, we experimentally study the dynamics of a two-level system of a single spin driven in the strong-driving regime where the rotatin
Here we use perturbation techniques based on the averaging method to investigate Rabi oscillations in cw and pulse-driven two-level systems (TLSs). By going beyond the rotating-wave approximation, especifically to second-order in perturbation, we obt
We present an analytical method for the two-qubit quantum Rabi model. While still operating in the frame of the generalized rotating-wave approximation (GRWA), our method further embraces the idea of introducing variational parameters. The optimal va