ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement evolution of a two-qubit system with decay beyond rotating-wave approximation

180   0   0.0 ( 0 )
 نشر من قبل Da-Chuang Li
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two noninteracting atoms, initially entangled in Bell states, are coupled to a one-mode cavity. Based on the reduced non-perturbative quantum master equation, the entanglement evolution of the two atoms with decay is investigated beyond rotating-wave approximation. It is shown that the counter-rotating wave terms have great influence on the disentanglement behavior. The phenomenon of entanglement sudden death and entanglement sudden birth will occur.



قيم البحث

اقرأ أيضاً

The entanglement dynamics of two remote qubits is examined analytically. The qubits interact arbitrarily strongly with separate harmonic oscillators in the idealized degenerate limit of the Jaynes-Cummings Hamiltonian. In contrast to well known non-d egenerate RWA results, it is shown that ideally degenerate qubits cannot induce bipartite entanglement between their partner oscillators.
Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if t he number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subspace, and that they show resonant behavior as a function of photon number. We develop a theory for these observations based on level crossings within the Jaynes-Cummings ladder, with transitions mediated by terms in the Hamiltonian that are typically ignored by the rotating wave approximation. We find that the most important of these terms comes from an unexpected broken symmetry in the qubit potential. We confirm the theory by measuring the photon occupation of the resonator when transitions occur while varying the detuning between the qubit and resonator.
Quantum systems driven by strong oscillating fields are the source of many interesting physical phenomena. In this work, we experimentally study the dynamics of a two-level system of a single spin driven in the strong-driving regime where the rotatin g-wave approximation is not valid. This two-level system is a subsystem of a single Nitrogen-Vacancy center coupled to a first-shell $^{13}$C nuclear spin in diamond at a level anti-crossing point that occurs in the $m_{s}=pm1$ manifold when the energy level splitting between the $m_{s}$ = $+1$ and $-1$ spin states due to the static magnetic field is $approx$ 127 MHz, which is roughly equal to the spectral splitting due to the $^{13}$C hyperfine interaction. The transition frequency of this electron spin two-level system in a static magnetic field of 28.9 G is 1.7 MHz and it can be driven only by the $z$-component of the RF field. Electron spin Rabi frequencies in this system can reach tens of MHz even for moderate RF powers. The simple sinusoidal Rabi oscillations that occur when the amplitude of the driving field is much smaller than the transition frequency become complex when the driving field strength is comparable or greater than the energy level splitting. We observe that the system oscillates faster than the amplitude of the driving field and the response of the system shows multiple frequencies.
324 - Adriano A. Batista 2015
Here we use perturbation techniques based on the averaging method to investigate Rabi oscillations in cw and pulse-driven two-level systems (TLSs). By going beyond the rotating-wave approximation, especifically to second-order in perturbation, we obt ain the Bloch-Siegert shift of the TLS resonant frequency, in which the resonant frequency increases with the driving field amplitude. This frequency shift implies that short resonant $pi$-pulses in which the Rabi frequency is approximately 40% or higher of the transition frequency do not achieve complete inversion in TLSs. Hence, guided by analytical results based on the averaging technique, we propose two methods for obtaining population
We present an analytical method for the two-qubit quantum Rabi model. While still operating in the frame of the generalized rotating-wave approximation (GRWA), our method further embraces the idea of introducing variational parameters. The optimal va lue of the variational parameter is determined by minimizing the energy function of the ground state. Comparing with numerical exact results, we show that our method evidently improves the accuracy of the conventional GRWA in calculating fundamental physical quantities, such as energy spectra, mean photon number, and dynamics. Interestingly, the accuracy of our method allows us to reproduce the asymptotic behavior of mean photon number in large frequency ratio for the ground state and investigate the quasi-periodical structure of the time evolution, which are incapable of being predicted by the GRWA. The applicable parameter ranges cover the ultrastrong coupling regime, which will be helpful to recent experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا