ﻻ يوجد ملخص باللغة العربية
Magnetic excitations are investigated for a hexagonal polar magnet Fe2Mo3O8 by terahertz spectroscopy. We observed magnon modes including an electric-field active magnon, electromagnon, in the collinear antiferromagnetic phase with spins parallel to the c axis. We unravel the nature of these excitations by investigating the correlation between the evolution of the mode profile and the magnetic transition from antiferromagnetic to ferrimagnetic order induced by magnetic field or Zn-doping. We propose that the observed electromagnon mode involves the collective precession of the spins with oscillating in-plane electric polarization through the mechanism of the linear magnetoelectric effect.
Terahertz time-domain spectroscopy was performed to directly probe the low-energy (1-5 meV) electrodynamics of triangular lattice antiferromagnets CuFe1-xGaxO2 (x = 0.00, 0.01, and 0.035). We discovered an electromagnon (electric-field-active magnon)
Strong coupling between magnon and electromagnetic wave can lead to the formation of a coupled spinphoton quasiparticle named as magnon-polariton. The phenomenon is well studied for ferromagnetic systems inside microwave cavities in recent years. How
The notion of a simple ordered state implies homogeneity. If the order is established by a broken symmetry, elementary Landau theory of phase transitions shows that only one symmetry mode describes this state. Precisely at points of phase coexistence
Atomically sharp oxide heterostructures often exhibit unusual physical properties that are absent in the constituent bulk materials. The interplay between electrostatic boundary conditions, strain and dimensionality in ultrathin epitaxial films can r
Ruthenium compounds play prominent roles in materials research ranging from oxide electronics to catalysis, and serve as a platform for fundamental concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and solid-state analogues of the