ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnons in the spin collinear state of a triangular lattice antiferromagnet

135   0   0.0 ( 0 )
 نشر من قبل Shinichiro Seki
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Terahertz time-domain spectroscopy was performed to directly probe the low-energy (1-5 meV) electrodynamics of triangular lattice antiferromagnets CuFe1-xGaxO2 (x = 0.00, 0.01, and 0.035). We discovered an electromagnon (electric-field-active magnon) excitation at 2.3 meV in the paraelectric up-up-down-down collinear magnetic phase, while this electromagnon vanishes in the ferroelectric helimagnetic phase. Anti-correlation with noncollinear magnetism excludes the exchange-striction mechanism as the origin of dynamical magnetoelectric coupling, and hence evidences the observation of spin-orbit coupling mediated electromagnon in the present compound.



قيم البحث

اقرأ أيضاً

We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high te mperatures down to $J/3$, we calculate local susceptibility near a nonmagnetic impurity and near a grain boundary for the nearest neighbor Heisenberg model in high temperature series expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low density of impurities we would not be able to explain the line broadening present in the experiments already at elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons. We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller projection. The zero temperature local susceptibility decays as a power law and oscillates at $2 k_F$. As in the high temperature analysis we find that a low density of impurities is not able to explain the observed broadening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large density of point-like disorder gives broadening that is consistent with the experiment down to about 5K, but that below this temperature additional mechanism is likely needed.
Magnetic excitations are investigated for a hexagonal polar magnet Fe2Mo3O8 by terahertz spectroscopy. We observed magnon modes including an electric-field active magnon, electromagnon, in the collinear antiferromagnetic phase with spins parallel to the c axis. We unravel the nature of these excitations by investigating the correlation between the evolution of the mode profile and the magnetic transition from antiferromagnetic to ferrimagnetic order induced by magnetic field or Zn-doping. We propose that the observed electromagnon mode involves the collective precession of the spins with oscillating in-plane electric polarization through the mechanism of the linear magnetoelectric effect.
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak sing le-ion anisotropy of $|D|$/$J_1$ $sim$ 4.6% is quantitatively determined by fitting to the electron spin resonance (ESR) linewidth and susceptibility measured at high temperatures. The weak single-ion anisotropy interactions, possibly along with other perturbations, e.g. next-nearest-neighbor interactions, suppress the long-range magnetic order and render the system disordered, as evidenced by both the absence of any clear magnetic reflections in neutron diffraction and the presence of the dominant paramagnetic ESR signal down to 2 K ($sim$ 0.04$J_1$$S^2$), where the magnetic entropy is almost zero. The power-law behavior of specific heat ($C_m$ $sim$ $T^{2.2}$) observed below the freezing temperature of $T_f$ = 25 K in $alpha$-CrOOH or below $T_f$ = 22 K in $alpha$-CrOOD is insensitive to the external magnetic field, and thus is consistent with the theoretical prediction of a gapless U(1) Dirac quantum spin liquid (QSL) ground state. At low temperatures, the spectral weight of the low-energy continuous spin excitations accumulates at the K points of the Brillouin zone, e.g. $|mathbf{Q}|$ = 4$pi$/(3$a$), and the putative Dirac cones are clearly visible. Our work is a first step towards the understanding of the possible Dirac QSL ground state in this triangular-lattice magnet with $S$ = 3/2.
By means of neutron scattering measurements, we have investigated spin-wave excitation in a collinear four-sublattice (4SL) magnetic ground state of a triangular lattice antiferromagnet CuFeO2, which has been of recent interest as a strongly frustrat ed magnet, a spin-lattice coupled system and a multiferroic. To avoid mixing of spin-wave spectrum from magnetic domains having three different orientations reflecting trigonal symmetry of the crystal structure, we have applied uniaxial pressure on [1-10] direction of a single crystal CuFeO2. By elastic neutron scattering measurements, we have found that only 10 MPa of the uniaxial pressure results in almost single domain state in the 4SL phase. We have thus performed inelastic neutron scattering measurements using the single domain sample, and have identified two distinct spin- wave branches. The dispersion relation of the upper spin-wave branch cannot be explained by the previous theoretical model [R. S. Fishman: J. Appl. Phys. 103 (2008) 07B109]. This implies the importance of the lattice degree of freedom in the spin-wave excitation in this system, because the previous calculation neglected the effect of the spin-driven lattice distortion in the 4SL phase. We have also discussed relationship between the present results and the recently discovered electromagnon excitation.
Here we present a neutron scattering-based study of magnetic excitations and magnetic order in NaYbO$_2$ under the application of an external magnetic field. The crystal electric field-split $J = 7/2$ multiplet structure is determined, revealing a mi xed $|m_z>$ ground state doublet and is consistent with a recent report Ding et al. [1]. Our measurements further suggest signatures of exchange effects in the crystal field spectrum, manifested by a small splitting in energy of the transition into the first excited doublet. The field-dependence of the low-energy magnetic excitations across the transition from the quantum disordered ground state into the fluctuation-driven ordered regime is analyzed. Signs of a first-order phase transition into a noncollinear ordered state are revealed at the upper-field phase boundary of the ordered regime, and higher order magnon scattering, suggestive of strong magnon-magnon interactions, is resolved within the previously reported $up-up-down$ phase. Our results reveal a complex phase diagram of field-induced order and spin excitations within NaYbO$_2$ and demonstrate the dominant role of quantum fluctuations cross a broad range of fields within its interlayer frustrated triangular lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا