ﻻ يوجد ملخص باللغة العربية
The notion of a simple ordered state implies homogeneity. If the order is established by a broken symmetry, elementary Landau theory of phase transitions shows that only one symmetry mode describes this state. Precisely at points of phase coexistence domain states formed of large regions of different phases can be stabilized by long range interactions. In uniaxial antiferromagnets the so-called metamagnetism is an example of such a behavior, when an antiferromagnetic and field-induced spin-polarized paramagnetic/ferromagnetic state co-exist at a jump-like transition in the magnetic phase diagram. Here, combining experiment with theoretical analysis, we show that a different type of mixed state between antiferromagnetism and ferromagnetism can be created in certain acentric materials. In the small-angle neutron scattering experiments we observe a field-driven spin-state in the layered antiferromagnet Ca3Ru2O7, which is modulated on a scale between 8 and 20 nm and has both antiferromagnetic and ferromagnetic parts. We call this state a metamagnetic texture and explain its appearance by the chiral twisting effects of the asymmetric Dzyaloshinskii-Moriya (DM) exchange. The observation can be understood as an extraordinary coexistence, in one thermodynamic state, of spin orders belonging to different symmetries. Experimentally, the complex nature of this metamagnetic state is demonstrated by measurements of anomalies in electronic transport which reflect the spin-polarization in the metamagnetic texture, determination of the magnetic orbital moments, which supports the existence of strong spin-orbit effects, a pre-requisite for the mechanism of twisted magnetic states in this material.
Atomically sharp oxide heterostructures often exhibit unusual physical properties that are absent in the constituent bulk materials. The interplay between electrostatic boundary conditions, strain and dimensionality in ultrathin epitaxial films can r
Magnetic excitations are investigated for a hexagonal polar magnet Fe2Mo3O8 by terahertz spectroscopy. We observed magnon modes including an electric-field active magnon, electromagnon, in the collinear antiferromagnetic phase with spins parallel to
Unconventional features of relativistic Dirac/Weyl quasi-particles in topological materials are most evidently manifested in the 2D quantum Hall effect (QHE), whose variety is further enriched by their spin and/or valley polarization. Although its ex
Strong coupling between magnon and electromagnetic wave can lead to the formation of a coupled spinphoton quasiparticle named as magnon-polariton. The phenomenon is well studied for ferromagnetic systems inside microwave cavities in recent years. How
We show that the metamagnetic transition in Sr$_4$Ru$_3$O$_{10}$ bifurcates into two transitions as the field is rotated away from the conducting planes. This two-step process comprises partial or total alignment of moments in ferromagnetic bands fol