ﻻ يوجد ملخص باللغة العربية
Strong coupling between magnon and electromagnetic wave can lead to the formation of a coupled spinphoton quasiparticle named as magnon-polariton. The phenomenon is well studied for ferromagnetic systems inside microwave cavities in recent years. However, formation of magnon-polariton is rarely seen for an antiferromagnet (AFM) because the strong coupling condition is not easily fulfilled. Here we present time-domain terahertz measurement on a multiferroic polar antiferromagnet Fe2Mo3O8. We find clearly beating between two modes at frequencies above and below the electric-active magnon frequency below TN, which we assign to the formation of AFM magnon-polariton. An ultra-strong spin-photon coupling effect is derived based on the energy level splitting. However, the AFM magnon-polariton is absent in the frequency domain measurement. Our work reveals that the coherent magnon formation driven by the ultrashort THz pulse provides a new way to detect polariton mode splitting.
Magnetic excitations are investigated for a hexagonal polar magnet Fe2Mo3O8 by terahertz spectroscopy. We observed magnon modes including an electric-field active magnon, electromagnon, in the collinear antiferromagnetic phase with spins parallel to
The ability to achieve strong-coupling has made cavity-magnon systems an exciting platform for the development of hybrid quantum systems and the investigation of fundamental problems in physics. Unfortunately, current experimental realizations are co
We present both static and time-resolved second harmonic generation (SHG) measurements on polar antiferromagnet Fe$_2$Mo$_3$O$_8$ to monitor the evolution of the electric polarization change and its coupling to magnetic order. We find that only one o
Synthetic antiferromagnet, comprised of two ferromagnetic layers separated by a non-magnetic layer, possesses two uniform precession resonance modes: in-phase acoustic mode and out-of-phase optic mode. In this work, we theoretically and numerically d
We demonstrate terahertz time-domain spectroscopy (THz-TDS) to be an accurate, rapid and scalable method to probe the interaction-induced Fermi velocity renormalization { u}F^* of charge carriers in graphene. This allows the quantitative extraction o