ترغب بنشر مسار تعليمي؟ اضغط هنا

An Eruptive Hot-Channel Structure Observed at Metric Wavelength as a Moving Type-IV Solar Radio Burst

201   0   0.0 ( 0 )
 نشر من قبل Vasanth V
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hot channel (HC) structure, observed in the high-temperature passbands of the AIA/SDO, is regarded as one candidate of coronal flux rope which is an essential element of solar eruptions. Here we present the first radio imaging study of an HC structure in the metric wavelength. The associated radio emission manifests as a moving type-IV (t-IVm) burst. We show that the radio sources co-move outwards with the HC, indicating that the t-IV emitting energetic electrons are efficiently trapped within the structure. The t-IV sources at different frequencies present no considerable spatial dispersion during the early stage of the event, while the sources spread gradually along the eruptive HC structure at later stage with significant spatial dispersion. The t-IV bursts are characterized by a relatively-high brightness temperature ($sim$ 10$^{7}$ $-$ 10$^{9}$ K), a moderate polarization, and a spectral shape that evolves considerably with time. This study demonstrates the possibility of imaging the eruptive HC structure at the metric wavelength and provides strong constraints on the t-IV emision mechanism, which, if understood, can be used to diagnose the essential parameters of the eruptive structure.

قيم البحث

اقرأ أيضاً

Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter N in the radio dynamic spectrum and reveal a magnetic mirror ef fect in coronal loops. Here, we report a well-observed N-shaped burst consisting of three successive branches at metric wavelength with both fundamental and harmonic components and a high brightness temperature ($>$10$^9$ K). We verify the burst as a true type N burst generated by the same electron beam from three aspects of the data. First, durations of the three branches at a given frequency increase gradually, may due to the dispersion of the beam along its path. Second, the flare site, as the only possible source of non-thermal electrons, is near the western feet of large-scale closed loops. Third, the first branch and the following two branches are localized at different legs of the loops with opposite sense of polarization. We also find that the sense of polarization of the radio burst is in contradiction to the O-mode and there exists a fairly large time delay ($sim$3-5 s) between the fundamental and harmonic components. Possible explanations accounting for these observations are presented. Assuming the classical plasma emission mechanism, we can infer coronal parameters such as electron density and magnetic field near the radio source and make diagnostics on the magnetic mirror process.
Context. The Sun is an active star and the source of the largest explosions in the solar system, such as flares and coronal mass ejections (CMEs). Flares and CMEs are powerful particle accelerators that can generate radio emission through various emi ssion mechanisms. Aims. CMEs are often accompanied by Type IV radio bursts that are observed as continuum emission in dynamic spectra at decimetric and metric wavelengths, but their emission mechanism can vary from event to event. Here, we aim to determine the emission mechanism of a complex Type IV burst that accompanied the flare and CME on 22 September 2011. Methods. We used radio imaging from the Nanc{c}ay Radioheliograph, spectroscopic data from the e-Callisto network, ARTEMIS, Ondrejov, and Phoenix3 spectrometers combined with extreme-ultraviolet observations from NASAs Solar Dynamic Observatory to analyse the Type IV radio burst and determine its emission mechanism. Results. We show that the emission mechanism of the Type IV radio burst changes over time. We identified two components in the Type IV radio burst: an earlier stationary Type IV showing gyro-synchrotron behaviour, and a later moving Type IV burst covering the same frequency band. This second component has a coherent emission mechanism. Fundamental plasma emission and the electroncyclotron maser emission are further investigated as possible emission mechanisms for the generation of the moving Type IV burst. Conclusions. Type IV bursts are therefore complex radio bursts, where multiple emission mechanisms can contribute to the generation of the wide-band continuum observed in dynamic spectra. Imaging spectroscopy over a wide frequency band is necessary to determine the emission mechanisms of Type IV bursts that are observed in dynamic spectra.
348 - V. Vasanth , Yao Chen , Maoshui Lv 2018
Source imaging of solar radio bursts can be used to track energetic electrons and associated magnetic structures. Here we present a combined analysis of data at different wavelengths for an eruption associated with a moving type-IV (t-IVm) radio burs t. In the inner corona, the sources are correlated with a hot and twisted eruptive EUV structure, while in the outer corona the sources are associated with the top front of the bright core of a white light coronal mass ejection (CME). This reveals the potential of using t-IVm imaging data to continuously track the CME by lighting up the specific component containing radio-emitting electrons. It is found that the t-IVm burst presents a clear spatial dispersion with observing frequencies. The burst manifests broken power-law like spectra in brightness temperature, which is as high as $10^7$-$10^9$ K while the polarization level is in-general weak. In addition, the t-IVm burst starts during the declining phase of the flare with a duration as long as 2.5 hours. From the differential emission measure analysis of AIA data, the density of the T-IVm source is likely at the level of 10$^8$ cm$^{-3}$ at the start of the burst, and the temperature may reach up to several MK. These observations do not favor gyro-synchrotron to be the radiation mechanism, yet in line with a coherent plasma emission excited by energetic electrons trapped within the source. Further studies are demanded to elucidate the emission mechanism and explore the full diagnostic potential of t-IVm bursts.
96 - Z. Wu , Y. Chen , G. Huang 2016
Corona structures and processes during the pre-impulsive stage of solar eruption are crucial to understanding the physics leading to the subsequent explosive energy release. Here we present the first microwave imaging study of a hot flux rope structu re during the pre-impulsive stage of an eruptive M7.7 solar flare, with the Nobeyama Radioheliograph (NoRH) at 17 GHz. The flux rope is also observed by the SDO/AIA in its hot passbands of 94 and 131 AA. In the microwave data, it is revealed as an overall arcade-like structure consisting of several intensity enhancements bridged by generally weak emissions, with brightness temperatures ($T_B$) varying from ~10,000~K to ~20,000 K. Locations of microwave intensity enhancements along the structure remain relatively fixed at certain specific parts of the flux rope, indicating that the distribution of emitting electrons is affected by the large scale magnetic configuration of the twisted flux rope. Wavelet analysis shows a pronounced 2-min period of the microwave $T_B$ variation during the pre-impulsive stage of interest. The period agrees well with that reported for AIA sunward-contracting loops and upward ejective plasmoids (suggested to be reconnection outflows). This suggests that both periodicities are controlled by the same reconnection process that takes place intermittently at a 2-min time scale. We infer that at least a part of the emission is excited by non-thermal energetic electrons via the gyro-synchrotron mechanism. The study demonstrates the potential of microwave imaging in exploring the flux rope magnetic geometry and relevant reconnection process during the onset of solar eruption.
In this article, we review some key aspects of a multi-wavelength flare which have essentially contributed to form a standard flare model based on the magnetic reconnection. The emphasis is given on the recent observations taken by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on the X-ray emission originating from different regions of the coronal loops. We also briefly summarize those observations which do not seem to accommodate within the canonical flare picture and discuss the challenges for future investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا