ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of a Metric Type N Solar Radio Burst

363   0   0.0 ( 0 )
 نشر من قبل X. L. Kong
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter N in the radio dynamic spectrum and reveal a magnetic mirror effect in coronal loops. Here, we report a well-observed N-shaped burst consisting of three successive branches at metric wavelength with both fundamental and harmonic components and a high brightness temperature ($>$10$^9$ K). We verify the burst as a true type N burst generated by the same electron beam from three aspects of the data. First, durations of the three branches at a given frequency increase gradually, may due to the dispersion of the beam along its path. Second, the flare site, as the only possible source of non-thermal electrons, is near the western feet of large-scale closed loops. Third, the first branch and the following two branches are localized at different legs of the loops with opposite sense of polarization. We also find that the sense of polarization of the radio burst is in contradiction to the O-mode and there exists a fairly large time delay ($sim$3-5 s) between the fundamental and harmonic components. Possible explanations accounting for these observations are presented. Assuming the classical plasma emission mechanism, we can infer coronal parameters such as electron density and magnetic field near the radio source and make diagnostics on the magnetic mirror process.



قيم البحث

اقرأ أيضاً

Standing shocks are believed to be responsible for stationary Type II solar radio bursts, whereas drifting Type II bursts are excited by moving shocks often related to coronal mass ejections (CMEs). Observations of either stationary or drifting Type II bursts are common, but a transition between the two states has not yet been reported. Here, we present a Type II burst which shows a clear, continuous transition from a stationary to a drifting state, the first observation of its kind. Moreover, band splitting is observed in the stationary parts of the burst, as well as intriguing negative and positive frequency-drift fine structures within the stationary emissions. The relation of the radio emissions to an observed jet and a narrow CME was investigated across multiple wavelengths, and the mechanisms leading to the transitioning Type II burst were determined. We find that a jet eruption generates a streamer-puff CME and that the interplay between the CME-driven shock and the streamer is likely to be responsible for the observed radio emissions.
Hot channel (HC) structure, observed in the high-temperature passbands of the AIA/SDO, is regarded as one candidate of coronal flux rope which is an essential element of solar eruptions. Here we present the first radio imaging study of an HC structur e in the metric wavelength. The associated radio emission manifests as a moving type-IV (t-IVm) burst. We show that the radio sources co-move outwards with the HC, indicating that the t-IV emitting energetic electrons are efficiently trapped within the structure. The t-IV sources at different frequencies present no considerable spatial dispersion during the early stage of the event, while the sources spread gradually along the eruptive HC structure at later stage with significant spatial dispersion. The t-IV bursts are characterized by a relatively-high brightness temperature ($sim$ 10$^{7}$ $-$ 10$^{9}$ K), a moderate polarization, and a spectral shape that evolves considerably with time. This study demonstrates the possibility of imaging the eruptive HC structure at the metric wavelength and provides strong constraints on the t-IV emision mechanism, which, if understood, can be used to diagnose the essential parameters of the eruptive structure.
238 - V. Vasanth 2013
The Type-II solar radio burst recorded on 13 June 2010 by the radio spectrograph of the Hiraiso Solar Observatory was employed to estimate the magnetic-field strength in the solar corona. The burst was characterized by a well pronounced band-splittin g, which we used to estimate the density jump at the shock and Alfven Mach number using the Rankine-Hugoniot relations. The plasma frequency of the Type-II bursts is converted into height [R] in solar radii using the appropriate density model, then we estimated the shock speed [Vs], coronal Alfven velocity [Va], and the magnetic-field strength at different heights. The relative bandwidth of the band-split is found to be in the range 0.2 -- 0.25, corresponding to the density jump of X = 1.44 -- 1.56, and the Alfven Mach number of MA = 1.35 -- 1.45. The inferred mean shock speed was on the order of V ~ 667 km/s. From the dependencies V(R) and MA(R) we found that Alfven speed slightly decreases at R ~ 1.3 -- 1.5. The magnetic-field strength decreases from a value between 2.7 and 1.7 G at R ~ 1.3 -- 1.5 Rs depending on the coronal-density model employed. We find that our results are in good agreement with the empirical scaling by Dulk and McLean (Solar Phys. 57, 279, 1978) and Gopalswamy et al. (Astrophys. J. 744, 72, 2012). Our result shows that Type-II band splitting method is an important tool for inferring the coronal magnetic field, especially when independent measurements were made from white light observations.
Type II radio bursts are evidence of shocks in the solar atmosphere and inner heliosphere that emit radio waves ranging from sub-meter to kilometer lengths. These shocks may be associated with CMEs and reach speeds higher than the local magnetosonic speed. Radio imaging of decameter wavelengths (20-90 MHz) is now possible with LOFAR, opening a new radio window in which to study coronal shocks that leave the inner solar corona and enter the interplanetary medium and to understand their association with CMEs. To this end, we study a coronal shock associated with a CME and type II radio burst to determine the locations at which the radio emission is generated, and we investigate the origin of the band-splitting phenomenon.
We present low-frequency (80-240 MHz) radio imaging of type III solar radio bursts observed by the Murchison Widefield Array (MWA) on 2015/09/21. The source region for each burst splits from one dominant component at higher frequencies into two incre asingly-separated components at lower frequencies. For channels below ~132 MHz, the two components repetitively diverge at high speeds (0.1-0.4 c) along directions tangent to the limb, with each episode lasting just ~2 s. We argue that both effects result from the strong magnetic field connectivity gradient that the burst-driving electron beams move into. Persistence mapping of extreme ultraviolet (EUV) jets observed by the Solar Dynamics Observatory reveals quasi-separatrix layers (QSLs) associated with coronal null points, including separatrix dome, spine, and curtain structures. Electrons are accelerated at the flare site toward an open QSL, where the beams follow diverging field lines to produce the source splitting, with larger separations at larger heights (lower frequencies). The splitting motion within individual frequency bands is interpreted as a projected time-of-flight effect, whereby electrons traveling along the outer field lines take slightly longer to excite emission at adjacent positions. Given this interpretation, we estimate an average beam speed of 0.2 c. We also qualitatively describe the quiescent corona, noting in particular that a disk-center coronal hole transitions from being dark at higher frequencies to bright at lower frequencies, turning over around 120 MHz. These observations are compared to synthetic images based on the Magnetohydrodynamic Algorithm outside a Sphere (MAS) model, which we use to flux-calibrate the burst data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا