ﻻ يوجد ملخص باللغة العربية
Context. The Sun is an active star and the source of the largest explosions in the solar system, such as flares and coronal mass ejections (CMEs). Flares and CMEs are powerful particle accelerators that can generate radio emission through various emission mechanisms. Aims. CMEs are often accompanied by Type IV radio bursts that are observed as continuum emission in dynamic spectra at decimetric and metric wavelengths, but their emission mechanism can vary from event to event. Here, we aim to determine the emission mechanism of a complex Type IV burst that accompanied the flare and CME on 22 September 2011. Methods. We used radio imaging from the Nanc{c}ay Radioheliograph, spectroscopic data from the e-Callisto network, ARTEMIS, Ondrejov, and Phoenix3 spectrometers combined with extreme-ultraviolet observations from NASAs Solar Dynamic Observatory to analyse the Type IV radio burst and determine its emission mechanism. Results. We show that the emission mechanism of the Type IV radio burst changes over time. We identified two components in the Type IV radio burst: an earlier stationary Type IV showing gyro-synchrotron behaviour, and a later moving Type IV burst covering the same frequency band. This second component has a coherent emission mechanism. Fundamental plasma emission and the electroncyclotron maser emission are further investigated as possible emission mechanisms for the generation of the moving Type IV burst. Conclusions. Type IV bursts are therefore complex radio bursts, where multiple emission mechanisms can contribute to the generation of the wide-band continuum observed in dynamic spectra. Imaging spectroscopy over a wide frequency band is necessary to determine the emission mechanisms of Type IV bursts that are observed in dynamic spectra.
Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter N in the radio dynamic spectrum and reveal a magnetic mirror ef
Hot channel (HC) structure, observed in the high-temperature passbands of the AIA/SDO, is regarded as one candidate of coronal flux rope which is an essential element of solar eruptions. Here we present the first radio imaging study of an HC structur
We study the non-thermal radio emission of the binary Cyg OB2 No. 8A, to see if it is variable and if that variability is locked to the orbital phase. We investigate if the synchrotron emission generated in the colliding-wind region of this binary ca
We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996$-$2016 are used. At the time of appearance of the par
Studies of solar radio bursts play an important role in understanding the dynamics and acceleration processes behind solar space weather events, and the influence of solar magnetic activity on solar system planets. Similar low-frequency bursts detect