ترغب بنشر مسار تعليمي؟ اضغط هنا

Source Imaging of a Moving Type-IV Solar Radio Burst and its Role in Tracking Coronal Mass Ejection From the Inner to the Outer Corona

349   0   0.0 ( 0 )
 نشر من قبل V. Vasanth
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Source imaging of solar radio bursts can be used to track energetic electrons and associated magnetic structures. Here we present a combined analysis of data at different wavelengths for an eruption associated with a moving type-IV (t-IVm) radio burst. In the inner corona, the sources are correlated with a hot and twisted eruptive EUV structure, while in the outer corona the sources are associated with the top front of the bright core of a white light coronal mass ejection (CME). This reveals the potential of using t-IVm imaging data to continuously track the CME by lighting up the specific component containing radio-emitting electrons. It is found that the t-IVm burst presents a clear spatial dispersion with observing frequencies. The burst manifests broken power-law like spectra in brightness temperature, which is as high as $10^7$-$10^9$ K while the polarization level is in-general weak. In addition, the t-IVm burst starts during the declining phase of the flare with a duration as long as 2.5 hours. From the differential emission measure analysis of AIA data, the density of the T-IVm source is likely at the level of 10$^8$ cm$^{-3}$ at the start of the burst, and the temperature may reach up to several MK. These observations do not favor gyro-synchrotron to be the radiation mechanism, yet in line with a coherent plasma emission excited by energetic electrons trapped within the source. Further studies are demanded to elucidate the emission mechanism and explore the full diagnostic potential of t-IVm bursts.



قيم البحث

اقرأ أيضاً

486 - X. Cheng , M. D. Ding , Y. Guo 2013
The magnetic flux rope (MFR) is believed to be the underlying magnetic structure of coronal mass ejections (CMEs). However, it remains unclear how an MFR evolves into and forms the multi-component structure of a CME. In this paper, we perform a compr ehensive study of an extreme-ultraviolet (EUV) MFR eruption on 2013 May 22 by tracking its morphological evolution, studying its kinematics, and quantifying its thermal property. As EUV brightenings begin, the MFR starts to rise slowly and shows helical threads winding around an axis. Meanwhile, cool filamentary materials descend spirally down to the chromosphere. These features provide direct observational evidence of intrinsically helical structure of the MFR. Through detailed kinematical analysis, we find that the MFR evolution experiences two distinct phases: a slow rise phase and an impulsive acceleration phase. We attribute the first phase to the magnetic reconnection within the quasi-separatrix-layers surrounding the MFR, and the much more energetic second phase to the fast magnetic reconnection underneath the MFR. We suggest that the transition between these two phases be caused by the torus instability. Moreover, we identify that the MFR evolves smoothly into the outer corona and appears as a coherent structure within the white light CME volume. The MFR in the outer corona was enveloped by bright fronts that originated from plasma pile-up in front of the expanding MFR. The fronts are also associated with the preceding sheath region followed the outmost MFR-driven shock.
101 - N. Gopalswamy , H. Xie , P. Makela 2013
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25 to 40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.
Solar activity, in particular coronal mass ejections (CMEs), are often accompanied by bursts of radiation at metre wavelengths. Some of these bursts have a long duration and extend over a wide frequency band, namely, type IV radio bursts. However, th e association of type IV bursts with coronal mass ejections is still not well understood. In this article, we perform the first statistical study of type IV solar radio bursts in the solar cycle 24. Our study includes a total of 446 type IV radio bursts that occurred during this cycle. Our results show that a clear majority, $sim 81 %$ of type IV bursts, were accompanied by CMEs, based on a temporal association with white-light CME observations. However, we found that only $sim 2.2 %$ of the CMEs are accompanied by type IV radio bursts. We categorised the type IV bursts as moving or stationary based on their spectral characteristics and found that only $sim 18 %$ of the total type IV bursts in this study were moving type IV bursts. Our study suggests that type IV bursts can occur with both `Fast ($geq 500$ km/s) and `Slow ($< 500$ km/s), and also both `Wide ($geq 60^{circ}$) and `Narrow ($< 60^{circ}$) CMEs. However, the moving type IV bursts in our study were mostly associated with `Fast and `Wide CMEs ($sim 52 %$), similar to type II radio bursts. Contrary to type II bursts, stationary type IV bursts have a more uniform association with all CME types.
We present coronal density profiles derived from low-frequency (80-240 MHz) imaging of three type III solar radio bursts observed at the limb by the Murchison Widefield Array (MWA). Each event is associated with a white light streamer at larger heigh ts and is plausibly associated with thin extreme ultraviolet rays at lower heights. Assuming harmonic plasma emission, we find average electron densities of 1.8 x10^8 cm^-3 down to 0.20 x10^8 cm^-3 at heights of 1.3 to 1.9 solar radii. These values represent roughly 2.4-5.4x enhancements over canonical background levels and are comparable to the highest streamer densities obtained from data at other wavelengths. Assuming fundamental emission instead would increase the densities by a factor of 4. High densities inferred from type III source heights can be explained by assuming that the exciting electron beams travel along overdense fibers or by radio propagation effects that may cause a source to appear at a larger height than the true emission site. We review the arguments for both scenarios in light of recent results. We compare the extent of the quiescent corona to model predictions to estimate the impact of propagation effects, which we conclude can only partially explain the apparent density enhancements. Finally, we use the time- and frequency-varying source positions to estimate electron beam speeds of between 0.24 and 0.60 c.
Hot channel (HC) structure, observed in the high-temperature passbands of the AIA/SDO, is regarded as one candidate of coronal flux rope which is an essential element of solar eruptions. Here we present the first radio imaging study of an HC structur e in the metric wavelength. The associated radio emission manifests as a moving type-IV (t-IVm) burst. We show that the radio sources co-move outwards with the HC, indicating that the t-IV emitting energetic electrons are efficiently trapped within the structure. The t-IV sources at different frequencies present no considerable spatial dispersion during the early stage of the event, while the sources spread gradually along the eruptive HC structure at later stage with significant spatial dispersion. The t-IV bursts are characterized by a relatively-high brightness temperature ($sim$ 10$^{7}$ $-$ 10$^{9}$ K), a moderate polarization, and a spectral shape that evolves considerably with time. This study demonstrates the possibility of imaging the eruptive HC structure at the metric wavelength and provides strong constraints on the t-IV emision mechanism, which, if understood, can be used to diagnose the essential parameters of the eruptive structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا