ترغب بنشر مسار تعليمي؟ اضغط هنا

An Approach for Self-Training Audio Event Detectors Using Web Data

76   0   0.0 ( 0 )
 نشر من قبل Ankit Parag Shah
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Audio Event Detection (AED) aims to recognize sounds within audio and video recordings. AED employs machine learning algorithms commonly trained and tested on annotated datasets. However, available datasets are limited in number of samples and hence it is difficult to model acoustic diversity. Therefore, we propose combining labeled audio from a dataset and unlabeled audio from the web to improve the sound models. The audio event detectors are trained on the labeled audio and ran on the unlabeled audio downloaded from YouTube. Whenever the detectors recognized any of the known sounds with high confidence, the unlabeled audio was use to re-train the detectors. The performance of the re-trained detectors is compared to the one from the original detectors using the annotated test set. Results showed an improvement of the AED, and uncovered challenges of using web audio from videos.



قيم البحث

اقرأ أيضاً

Sound event detection is an important facet of audio tagging that aims to identify sounds of interest and define both the sound category and time boundaries for each sound event in a continuous recording. With advances in deep neural networks, there has been tremendous improvement in the performance of sound event detection systems, although at the expense of costly data collection and labeling efforts. In fact, current state-of-the-art methods employ supervised training methods that leverage large amounts of data samples and corresponding labels in order to facilitate identification of sound category and time stamps of events. As an alternative, the current study proposes a semi-supervised method for generating pseudo-labels from unsupervised data using a student-teacher scheme that balances self-training and cross-training. Additionally, this paper explores post-processing which extracts sound intervals from network prediction, for further improvement in sound event detection performance. The proposed approach is evaluated on sound event detection task for the DCASE2020 challenge. The results of these methods on both validation and public evaluation sets of DESED database show significant improvement compared to the state-of-the art systems in semi-supervised learning.
Billions of USD are invested in new artists and songs by the music industry every year. This research provides a new strategy for assessing the hit potential of songs, which can help record companies support their investment decisions. A number of mo dels were developed that use both audio data, and a novel feature based on social media listening behaviour. The results show that models based on early adopter behaviour perform well when predicting top 20 dance hits.
Music, speech, and acoustic scene sound are often handled separately in the audio domain because of their different signal characteristics. However, as the image domain grows rapidly by versatile image classification models, it is necessary to study extensible classification models in the audio domain as well. In this study, we approach this problem using two types of sample-level deep convolutional neural networks that take raw waveforms as input and uses filters with small granularity. One is a basic model that consists of convolution and pooling layers. The other is an improved model that additionally has residual connections, squeeze-and-excitation modules and multi-level concatenation. We show that the sample-level models reach state-of-the-art performance levels for the three different categories of sound. Also, we visualize the filters along layers and compare the characteristics of learned filters.
Audio event classification is an important task for several applications such as surveillance, audio, video and multimedia retrieval etc. There are approximately 3M people with hearing loss who cant perceive events happening around them. This paper e stablishes the CURE dataset which contains curated set of specific audio events most relevant for people with hearing loss. We propose a ladder network based audio event classifier that utilizes 5s sound recordings derived from the Freesound project. We adopted the state-of-the-art convolutional neural network (CNN) embeddings as audio features for this task. We also investigate extreme learning machine (ELM) for event classification. In this study, proposed classifiers are compared with support vector machine (SVM) baseline. We propose signal and feature normalization that aims to reduce the mismatch between different recordings scenarios. Firstly, CNN is trained on weakly labeled Audioset data. Next, the pre-trained model is adopted as feature extractor for proposed CURE corpus. We incorporate ESC-50 dataset as second evaluation set. Results and discussions validate the superiority of Ladder network over ELM and SVM classifier in terms of robustness and increased classification accuracy. While Ladder network is robust to data mismatches, simpler SVM and ELM classifiers are sensitive to such mismatches, where the proposed normalization techniques can play an important role. Experimental studies with ESC-50 and CURE corpora elucidate the differences in dataset complexity and robustness offered by proposed approaches.
135 - Zixing Zhang , Ding Liu , Jing Han 2017
Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events is still chall enging. Previous methods mainly focused on designing the audio features in a `hand-crafted manner. Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were only considered on the frame level. In this article, we propose an unsupervised learning framework to learn a vector representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder and an RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams, but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for AEC.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا