ترغب بنشر مسار تعليمي؟ اضغط هنا

Raw Waveform-based Audio Classification Using Sample-level CNN Architectures

73   0   0.0 ( 0 )
 نشر من قبل Jongpil Lee
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Music, speech, and acoustic scene sound are often handled separately in the audio domain because of their different signal characteristics. However, as the image domain grows rapidly by versatile image classification models, it is necessary to study extensible classification models in the audio domain as well. In this study, we approach this problem using two types of sample-level deep convolutional neural networks that take raw waveforms as input and uses filters with small granularity. One is a basic model that consists of convolution and pooling layers. The other is an improved model that additionally has residual connections, squeeze-and-excitation modules and multi-level concatenation. We show that the sample-level models reach state-of-the-art performance levels for the three different categories of sound. Also, we visualize the filters along layers and compare the characteristics of learned filters.



قيم البحث

اقرأ أيضاً

Recently, the end-to-end approach that learns hierarchical representations from raw data using deep convolutional neural networks has been successfully explored in the image, text and speech domains. This approach was applied to musical signals as we ll but has been not fully explored yet. To this end, we propose sample-level deep convolutional neural networks which learn representations from very small grains of waveforms (e.g. 2 or 3 samples) beyond typical frame-level input representations. Our experiments show how deep architectures with sample-level filters improve the accuracy in music auto-tagging and they provide results comparable to previous state-of-the-art performances for the Magnatagatune dataset and Million Song Dataset. In addition, we visualize filters learned in a sample-level DCNN in each layer to identify hierarchically learned features and show that they are sensitive to log-scaled frequency along layer, such as mel-frequency spectrogram that is widely used in music classification systems.
163 - Jongpil Lee , Juhan Nam 2017
Music tag words that describe music audio by text have different levels of abstraction. Taking this issue into account, we propose a music classification approach that aggregates multi-level and multi-scale features using pre-trained feature extracto rs. In particular, the feature extractors are trained in sample-level deep convolutional neural networks using raw waveforms. We show that this approach achieves state-of-the-art results on several music classification datasets.
In this paper, we describe our contribution to Task 2 of the DCASE 2018 Audio Challenge. While it has become ubiquitous to utilize an ensemble of machine learning methods for classification tasks to obtain better predictive performance, the majority of ensemble methods combine predictions rather than learned features. We propose a single-model method that combines learned high-level features computed from log-scaled mel-spectrograms and raw audio data. These features are learned separately by two Convolutional Neural Networks, one for each input type, and then combined by densely connected layers within a single network. This relatively simple approach along with data augmentation ranks among the best two percent in the Freesound General-Purpose Audio Tagging Challenge on Kaggle.
In recent years, waveform-mapping-based speech enhancement (SE) methods have garnered significant attention. These methods generally use a deep learning model to directly process and reconstruct speech waveforms. Because both the input and output are in waveform format, the waveform-mapping-based SE methods can overcome the distortion caused by imperfect phase estimation, which may be encountered in spectral-mapping-based SE systems. So far, most waveform-mapping-based SE methods have focused on single-channel tasks. In this paper, we propose a novel fully convolutional network (FCN) with Sinc and dilated convolutional layers (termed SDFCN) for multichannel SE that operates in the time domain. We also propose an extended version of SDFCN, called the residual SDFCN (termed rSDFCN). The proposed methods are evaluated on two multichannel SE tasks, namely the dual-channel inner-ear microphones SE task and the distributed microphones SE task. The experimental results confirm the outstanding denoising capability of the proposed SE systems on both tasks and the benefits of using the residual architecture on the overall SE performance.
In recent years, synthetic speech generated by advanced text-to-speech (TTS) and voice conversion (VC) systems has caused great harms to automatic speaker verification (ASV) systems, urging us to design a synthetic speech detection system to protect ASV systems. In this paper, we propose a new speech anti-spoofing model named ResWavegram-Resnet (RW-Resnet). The model contains two parts, Conv1D Resblocks and backbone Resnet34. The Conv1D Resblock is based on the Conv1D block with a residual connection. For the first part, we use the raw waveform as input and feed it to the stacked Conv1D Resblocks to get the ResWavegram. Compared with traditional methods, ResWavegram keeps all the information from the audio signal and has a stronger ability in extracting features. For the second part, the extracted features are fed to the backbone Resnet34 for the spoofed or bonafide decision. The ASVspoof2019 logical access (LA) corpus is used to evaluate our proposed RW-Resnet. Experimental results show that the RW-Resnet achieves better performance than other state-of-the-art anti-spoofing models, which illustrates its effectiveness in detecting synthetic speech attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا