ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Referencing Self-Training Network for Sound Event Detection in Audio Mixtures

79   0   0.0 ( 0 )
 نشر من قبل Sangwook Park
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sound event detection is an important facet of audio tagging that aims to identify sounds of interest and define both the sound category and time boundaries for each sound event in a continuous recording. With advances in deep neural networks, there has been tremendous improvement in the performance of sound event detection systems, although at the expense of costly data collection and labeling efforts. In fact, current state-of-the-art methods employ supervised training methods that leverage large amounts of data samples and corresponding labels in order to facilitate identification of sound category and time stamps of events. As an alternative, the current study proposes a semi-supervised method for generating pseudo-labels from unsupervised data using a student-teacher scheme that balances self-training and cross-training. Additionally, this paper explores post-processing which extracts sound intervals from network prediction, for further improvement in sound event detection performance. The proposed approach is evaluated on sound event detection task for the DCASE2020 challenge. The results of these methods on both validation and public evaluation sets of DESED database show significant improvement compared to the state-of-the art systems in semi-supervised learning.

قيم البحث

اقرأ أيضاً

The weakly supervised sound event detection problem is the task of predicting the presence of sound events and their corresponding starting and ending points in a weakly labeled dataset. A weak dataset associates each training sample (a short recordi ng) to one or more present sources. Networks that solely rely on convolutional and recurrent layers cannot directly relate multiple frames in a recording. Motivated by attention and graph neural networks, we introduce the concept of an affinity mixup to incorporate time-level similarities and make a connection between frames. This regularization technique mixes up features in different layers using an adaptive affinity matrix. Our proposed affinity mixup network improves over state-of-the-art techniques event-F1 scores by $8.2%$.
Audio classification using breath and cough samples has recently emerged as a low-cost, non-invasive, and accessible COVID-19 screening method. However, no application has been approved for official use at the time of writing due to the stringent rel iability and accuracy requirements of the critical healthcare setting. To support the development of the Machine Learning classification models, we performed an extensive comparative investigation and ranking of 15 audio features, including less well-known ones. The results were verified on two independent COVID-19 sound datasets. By using the identified top-performing features, we have increased the COVID-19 classification accuracy by up to 17% on the Cambridge dataset, and up to 10% on the Coswara dataset, compared to the original baseline accuracy without our feature ranking.
Audio Event Detection (AED) aims to recognize sounds within audio and video recordings. AED employs machine learning algorithms commonly trained and tested on annotated datasets. However, available datasets are limited in number of samples and hence it is difficult to model acoustic diversity. Therefore, we propose combining labeled audio from a dataset and unlabeled audio from the web to improve the sound models. The audio event detectors are trained on the labeled audio and ran on the unlabeled audio downloaded from YouTube. Whenever the detectors recognized any of the known sounds with high confidence, the unlabeled audio was use to re-train the detectors. The performance of the re-trained detectors is compared to the one from the original detectors using the annotated test set. Results showed an improvement of the AED, and uncovered challenges of using web audio from videos.
Access to large corpora with strongly labelled sound events is expensive and difficult in engineering applications. Much research turns to address the problem of how to detect both the types and the timestamps of sound events with weak labels that on ly specify the types. This task can be treated as a multiple instance learning (MIL) problem, and the key to it is the design of a pooling function. In this paper, we propose an adaptive power pooling function which can automatically adapt to various sound sources. On two public datasets, the proposed power pooling function outperforms the state-of-the-art linear softmax pooling on both coarsegrained and fine-grained metrics. Notably, it improves the event-based F1 score (which evaluates the detection of event onsets and offsets) by 11.4% and 10.2% relative on the two datasets. While this paper focuses on sound event detection applications, the proposed method can be applied to MIL tasks in other domains.
In this paper, a special decision surface for the weakly-supervised sound event detection (SED) and a disentangled feature (DF) for the multi-label problem in polyphonic SED are proposed. We approach SED as a multiple instance learning (MIL) problem and utilize a neural network framework with a pooling module to solve it. General MIL approaches include two kinds: the instance-level approaches and embedding-level approaches. We present a method of generating instance-level probabilities for the embedding level approaches which tend to perform better than the instance-level approaches in terms of bag-level classification but can not provide instance-level probabilities in current approaches. Moreover, we further propose a specialized decision surface (SDS) for the embedding-level attention pooling. We analyze and explained why an embedding-level attention module with SDS is better than other typical pooling modules from the perspective of the high-level feature space. As for the problem of the unbalanced dataset and the co-occurrence of multiple categories in the polyphonic event detection task, we propose a DF to reduce interference among categories, which optimizes the high-level feature space by disentangling it based on class-wise identifiable information and obtaining multiple different subspaces. Experiments on the dataset of DCASE 2018 Task 4 show that the proposed SDS and DF significantly improve the detection performance of the embedding-level MIL approach with an attention pooling module and outperform the first place system in the challenge by 6.6 percentage points.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا