ﻻ يوجد ملخص باللغة العربية
At any quantum critical point (QCP) with a critical magnetic field $H_c$, the magnetic Gruneisen parameter $Gamma_{rm H}$, which equals the adiabatic magnetocaloric effect, is predicted to show characteristic signatures such as a divergence, sign change and $T/(H-H_c)^epsilon$ scaling. We categorize thirteen materials, ranging from heavy fermion metals to frustrated magnets, where such experimental signatures have been found. Remarkably, seven stoichiometric materials at ambient pressure show $H_c=0$. However, additional thermodynamic and magnetic experiments suggest that most of them do not show a zero-field QCP. While the existence of a pressure insensitive strange metal state is one possibility, for some of the materials $Gamma_{rm H}$ seems influenced by impurities or a fraction of moments which are not participating in a frozen state. To unambiguously prove zero-field and pressure sensitive quantum criticality, a $Gamma_{rm H}$ divergence is insufficient and also the Gruneisen ratio of thermal expansion to specific heat must diverge.
The magneto-caloric effect (MCE), which is the refrigeration based on the variation of the magnetic entropy, is of great interest in both technological applications and fundamental research. The MCE is quantified by the magnetic Gruneisen parameter $
The Gruneisen ratio ($Gamma$), i.e.,the ratio of the linear thermal expansivity to the specific heat at constant pressure, quantifies the degree of anharmonicity of the potential governing the physical properties of a system. While $Gamma$ has been i
We report the magnetic phase diagram of single-crystalline LiFePO$_4$ in magnetic fields up to 58~T and present a detailed study of magneto-elastic coupling by means of high-resolution capacitance dilatometry. Large anomalies at tn in the thermal exp
We use the recently-proposed emph{compressible cell} Ising-like model [Phys. Rev. Lett. textbf{120}, 120603 (2018)] to estimate the ratio between thermal expansivity and specific heat (the Gruneisen parameter $Gamma$) in supercooled water. Near the c
High-quality single crystals of CoTiO$_3$ are grown and used to elucidate in detail structural and magnetostructural effects by means of high-resolution capacitance dilatometry studies in fields up to 15 T which are complemented by specific heat and