ﻻ يوجد ملخص باللغة العربية
The Gruneisen ratio ($Gamma$), i.e.,the ratio of the linear thermal expansivity to the specific heat at constant pressure, quantifies the degree of anharmonicity of the potential governing the physical properties of a system. While $Gamma$ has been intensively explored in solid state physics, very little is known about its behavior for gases. This is most likely due to the difficulties posed to carry out both thermal expansion and specific heat measurements in gases with high accuracy as a function of pressure and temperature. Furthermore, to the best of our knowledge a comprehensive discussion about the peculiarities of the Gruneisen ratio is still lacking in the literature. Here we report on a detailed and comprehensive overview of the Gruneisen ratio. Particular emphasis is placed on the analysis of $Gamma$ for gases. The main findings of this work are: emph{i)} for the Van der Waals gas $Gamma$ depends only on the co-volume $b$ due to interaction effects, it is smaller than that for the ideal gas ($Gamma$ = 2/3) and diverges upon approaching the critical volume; emph{ii)} for the Bose-Einstein condensation of an ideal boson gas, assuming the transition as first-order $Gamma$ diverges upon approaching a critical volume, similarly to the Van der Waals gas; emph{iii)} for $^4$He at the superfluid transition $Gamma$ shows a singular behavior. Our results reveal that $Gamma$ can be used as an appropriate experimental tool to explore pressure-induced critical points.
The magneto-caloric effect (MCE), which is the refrigeration based on the variation of the magnetic entropy, is of great interest in both technological applications and fundamental research. The MCE is quantified by the magnetic Gruneisen parameter $
Using the Bethe ansatz solution, we analytically study expansionary, magnetic and interacting Gruneisen parameters (GPs) for one-dimensional (1D) Lieb-Liniger and Yang-Gaudin models. These different GPs elegantly quantify the dependences of character
We use the recently-proposed emph{compressible cell} Ising-like model [Phys. Rev. Lett. textbf{120}, 120603 (2018)] to estimate the ratio between thermal expansivity and specific heat (the Gruneisen parameter $Gamma$) in supercooled water. Near the c
At any quantum critical point (QCP) with a critical magnetic field $H_c$, the magnetic Gruneisen parameter $Gamma_{rm H}$, which equals the adiabatic magnetocaloric effect, is predicted to show characteristic signatures such as a divergence, sign cha
We report on the confinement of a Bose-Einstein condensate in an annular trap with widely tunable parameters. The trap relies on a combination of magnetic, optical and radio-frequency fields. The loading procedure is discussed. We present annular tra