ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracing the reionization epoch with ALMA: [CII] emission in z~7 galaxies

69   0   0.0 ( 0 )
 نشر من قبل Laura Pentericci
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new results on [CII]158$mu$ m emission from four galaxies in the reionization epoch. These galaxies were previously confirmed to be at redshifts between 6.6 and 7.15 from the presence of the Ly$alpha$ emission line in their spectra. The Ly$alpha$ emission line is redshifted by 100-200 km/s compared to the systemic redshift given by the [CII] line. These velocity offsets are smaller than what is observed in z~3 Lyman break galaxies with similar UV luminosities and emission line properties. Smaller velocity shifts reduce the visibility of Ly$alpha$ and hence somewhat alleviate the need for a very neutral IGM at z~7 to explain the drop in the fraction of Ly$alpha$ emitters observed at this epoch. The galaxies show [CII] emission with L[CII]=0.6-1.6 x10$^8 L_odot$: these luminosities place them consistently below the SFR-L[CII] relation observed for low redshift star forming and metal poor galaxies and also below z =5.5 Lyman break galaxies with similar star formation rates. We argue that previous undetections of [CII] in z~7 galaxies with similar or smaller star formation rates are due to selection effects: previous targets were mostly strong Ly$alpha$ emitters and therefore probably metal poor systems, while our galaxies are more representative of the general high redshift star forming population .



قيم البحث

اقرأ أيضاً

The HI gas content is a key ingredient in galaxy evolution, the study of which has been limited to moderate cosmological distances for individual galaxies due to the weakness of the hyperfine HI 21-cm transition. Here we present a new approach that a llows us to infer the HI gas mass $M_{rm HI}$ of individual galaxies up to $zapprox 6$, based on a direct measurement of the [CII]-to-HI conversion factor in star-forming galaxies at $zgtrsim 2$ using $gamma$-ray burst afterglows. By compiling recent [CII]-158 $mu$m emission line measurements we quantify the evolution of the HI content in galaxies through cosmic time. We find that the HI mass starts to exceed the stellar mass $M_star$ at $zgtrsim 1$, and increases as a function of redshift. The HI fraction of the total baryonic mass increases from around $20%$ at $z = 0$ to about $60%$ at $zsim 6$. We further uncover a universal relation between the HI gas fraction $M_{rm HI}/M_star$ and the gas-phase metallicity, which seems to hold from $zapprox 6$ to $z=0$. The majority of galaxies at $z>2$ are observed to have HI depletion times, $t_{rm dep,HI} = M_{rm HI}/{rm SFR}$, less than $approx 2$ Gyr, substantially shorter than for $zsim 0$ galaxies. Finally, we use the [CII]-to-HI conversion factor to determine the cosmic mass density of HI in galaxies, $rho_{rm HI}$, at three distinct epochs: $zapprox 0$, $zapprox 2$, and $zsim 4-6$. These measurements are consistent with previous estimates based on 21-cm HI observations in the local Universe and with damped Lyman-$alpha$ absorbers (DLAs) at $zgtrsim 2$, suggesting an overall decrease by a factor of $approx 5$ in $rho_{rm HI}(z)$ from the end of the reionization epoch to the present.
We present the final results from our ultra-deep spectroscopic campaign with FORS2 at the ESO/VLT for the confirmation of z~7 z--band dropout candidates selected from our VLT/Hawk-I imaging survey over three independent fields. In particular we repor t on two newly discovered galaxies at redshift ~6.7 in the NTT deep field: both galaxies show a Ly-alpha emission line with rest-frame EWs of the order 15-20 A and luminosities of 2-4 X 10^{42} erg/s. We also present the results of ultra-deep observations of a sample of i-dropout galaxies, from which we set a solid upper limit on the fraction of interlopers. Out of the 20 z-dropouts observed we confirm 5 galaxies at 6.7 < z < 7.1. This is systematically below the expectations drawn on the basis of lower redshift observations: in particular there is a significant lack of objects with intermediate Ly-alpha EWs (between 20 and 55 A). We conclude that the trend for the fraction of Ly-alpha emission in LBGs that is constantly increasing from z~3 to z~6 is most probably reversed from z~6 to z~7. Explaining the observed rapid change in the LAE fraction among the drop-out population with reionization requires a fast evolution of the neutral fraction of hydrogen in the Universe. Assuming that the Universe is completely ionized at z=6 and adopting the semi-analytical models of Dijkstra et al. (2011), we find that our data require a change of the neutral hydrogen fraction of the order Delta chi_{HI} ~ 0.6 in a time Delta z ~ 1, provided that the escape fraction does not increase dramatically over the same redshift interval.
The Lya line in the UV and the [CII] line in the FIR are widely used tools to identify galaxies and to obtain insights into ISM properties in the early Universe. By combining data obtained with ALMA in band 7 at ~ 320 GHz as part of the ALMA Large Pr ogram to INvestigate [CII] at Early Times (ALPINE) with spectroscopic data from DEIMOS at Keck, VIMOS and FORS2 at the VLT, we assembled a unique sample of 53 main-sequence star-forming galaxies at 4.4 < z < 6 in which we detect both the Lya line and the [CII]. We used [CII], observed with ALMA, as a tracer of the systemic velocity of the galaxies, and we find that 90% of the selected objects have Lya-[CII] velocity offsets in the range 0 < Dv_Lya-[CII] < 400 km/s, in line with the few measurements available so far in the early Universe, and significantly smaller than those observed at lower z. We observe ISM-[CII] offsets in the range -500 < Dv_ISM-[CII] < 0 km/s, in line with values at all redshifts. We find significant anticorrelations between Dv_Lya-[CII] and the Lya rest-frame equivalent width EW0(Lya) (or equivalently, the Lya escape fraction f_esc(Lya)). According to available models for the radiative transfer of Lya photons, the escape of Lya photons would be favored in galaxies with high outflow velocities, in agreement with our observations. The uniform shell model would also predict that the Lya escape in galaxies with slow outflows (0 < v_out < 300 km/s) is mainly determined by the neutral hydrogen column density (NHI), while the alternative model by Steidel+10 would favor a combination of NHI and covering fraction as driver of the Lya escape. We suggest that the observed increase in Lya escape that is observed between z~2 and z~6 is not due to a higher incidence of fast outflows at high redshift, but rather to a decrease in average NHI along the line of sight, or alternatively, a decrease in HI covering fraction. [abridged]
We discuss new Keck/MOSFIRE spectroscopic observations of four luminous galaxies at z~7-9 selected to have intense optical line emission by Roberts-Borsani et al. (2016). Previous follow-up has revealed Lyman-alpha in two of the four galaxies. Our ne w MOSFIRE observations confirm that Lyman-alpha is present in the entire sample. We detect Lyman-alpha emission in COS-zs7-1, confirming its redshift as z=7.154, and we detect Lyman-alpha in EGS-zs8-2 at z=7.477, verifying a tentative detection presented in an earlier study. The ubiquity of Lyman-alpha in this sample is puzzling given that the IGM is likely significantly neutral over 7<z<9. To investigate this result in more detail, we have initiated a campaign to target UV metal emission in the four Lyman-alpha emitters as a probe of both the radiation field and the velocity offset of Lyman-alpha. Here we present the detection of intense CIII] emission in EGS-zs8-1, a galaxy from this sample previously shown to have Lyman-alpha at z=7.73. Photoionization models indicate that an intense radiation field and low metallicity are required to reproduce the intense CIII] and optical line emission. We argue that this extreme radiation field is likely to affect the local environment, increasing the transmission of Lyman-alpha through the galaxy. Moreover, the centroid of CIII] indicates that Lyman-alpha is redshifted from the systemic value by 340 km/s. This velocity offset is larger than that seen in less luminous systems, providing an additional explanation for the transmission of Lyman-alpha emission through the IGM. Since the transmission is further enhanced by the likelihood that such systems are also situated in the densest regions with the largest ionized bubbles, the visibility of Lyman-alpha at z>7 is expected to be strongly luminosity-dependent, with the most effective transmission occurring in systems with intense star formation.
We report new deep ALMA observations aimed at investigating the [CII]158um line and continuum emission in three spectroscopically confirmed Lyman Break Galaxies at 6.8<z<7.1, i.e. well within the re-ionization epoch. With Star Formation Rates of SFR ~ 5-15 Msun/yr these systems are much more representative of the high-z galaxy population than other systems targeted in the past by millimeter observations. For the galaxy with the deepest observation we detect [CII] emission at redshift z=7.107, fully consistent with the Lyalpha redshift, but spatially offset by 0.7 (4 kpc) from the optical emission. At the location of the optical emission, tracing both the Lyalpha line and the far-UV continuum, no [CII] emission is detected in any of the three galaxies, with 3sigma upper limits significantly lower than the [CII] emission observed in lower reshift galaxies. These results suggest that molecular clouds in the central parts of primordial galaxies are rapidly disrupted by stellar feedback. As a result, [CII] emission mostly arises from more external accreting/satellite clumps of neutral gas. These findings are in agreement with recent models of galaxy formation. Thermal far-infrared continuum is not detected in any of the three galaxies. However, the upper limits on the infrared-to-UV emission ratio do not exceed those derived in metal- and dust-poor galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا