ﻻ يوجد ملخص باللغة العربية
We discuss new Keck/MOSFIRE spectroscopic observations of four luminous galaxies at z~7-9 selected to have intense optical line emission by Roberts-Borsani et al. (2016). Previous follow-up has revealed Lyman-alpha in two of the four galaxies. Our new MOSFIRE observations confirm that Lyman-alpha is present in the entire sample. We detect Lyman-alpha emission in COS-zs7-1, confirming its redshift as z=7.154, and we detect Lyman-alpha in EGS-zs8-2 at z=7.477, verifying a tentative detection presented in an earlier study. The ubiquity of Lyman-alpha in this sample is puzzling given that the IGM is likely significantly neutral over 7<z<9. To investigate this result in more detail, we have initiated a campaign to target UV metal emission in the four Lyman-alpha emitters as a probe of both the radiation field and the velocity offset of Lyman-alpha. Here we present the detection of intense CIII] emission in EGS-zs8-1, a galaxy from this sample previously shown to have Lyman-alpha at z=7.73. Photoionization models indicate that an intense radiation field and low metallicity are required to reproduce the intense CIII] and optical line emission. We argue that this extreme radiation field is likely to affect the local environment, increasing the transmission of Lyman-alpha through the galaxy. Moreover, the centroid of CIII] indicates that Lyman-alpha is redshifted from the systemic value by 340 km/s. This velocity offset is larger than that seen in less luminous systems, providing an additional explanation for the transmission of Lyman-alpha emission through the IGM. Since the transmission is further enhanced by the likelihood that such systems are also situated in the densest regions with the largest ionized bubbles, the visibility of Lyman-alpha at z>7 is expected to be strongly luminosity-dependent, with the most effective transmission occurring in systems with intense star formation.
Reionization-era galaxies tend to exhibit weak Ly$alpha$ emission, likely reflecting attenuation from an increasingly neutral IGM. Recent observations have begun to reveal exceptions to this picture, with strong Ly$alpha$ emission now known in four o
Lyman-alpha (Lya) photons that escape the interstellar medium of star-forming galaxies may be resonantly scattered by neutral hydrogen atoms in the circumgalactic and intergalactic media, thereby increasing the angular extent of the galaxys Lya emiss
We present statistical properties of diffuse Lyman-alpha halos (LAHs) around high-$z$ star-forming galaxies with large Subaru samples of Lyman-alpha emitters (LAEs) at $z=2.2$. We make subsamples defined by the physical quantities of LAEs central Lym
We make use of ALMA continuum observations of $15$ luminous Lyman-break galaxies at $z$$sim$$7$$-$$8$ to probe their dust-obscured star-formation. These observations are sensitive enough to probe to obscured SFRs of $20$ $M_{odot}$$/$$yr$ ($3sigma$).
Deep spectroscopic observations of z~6.5 galaxies have revealed a marked decline with increasing redshift in the detectability of Lyman-alpha emission. While this may offer valuable insight into the end of the reionisation process, it presents a fund