ترغب بنشر مسار تعليمي؟ اضغط هنا

The assembly of normal galaxies at z=7 probed by ALMA

180   0   0.0 ( 0 )
 نشر من قبل Roberto Maiolino
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report new deep ALMA observations aimed at investigating the [CII]158um line and continuum emission in three spectroscopically confirmed Lyman Break Galaxies at 6.8<z<7.1, i.e. well within the re-ionization epoch. With Star Formation Rates of SFR ~ 5-15 Msun/yr these systems are much more representative of the high-z galaxy population than other systems targeted in the past by millimeter observations. For the galaxy with the deepest observation we detect [CII] emission at redshift z=7.107, fully consistent with the Lyalpha redshift, but spatially offset by 0.7 (4 kpc) from the optical emission. At the location of the optical emission, tracing both the Lyalpha line and the far-UV continuum, no [CII] emission is detected in any of the three galaxies, with 3sigma upper limits significantly lower than the [CII] emission observed in lower reshift galaxies. These results suggest that molecular clouds in the central parts of primordial galaxies are rapidly disrupted by stellar feedback. As a result, [CII] emission mostly arises from more external accreting/satellite clumps of neutral gas. These findings are in agreement with recent models of galaxy formation. Thermal far-infrared continuum is not detected in any of the three galaxies. However, the upper limits on the infrared-to-UV emission ratio do not exceed those derived in metal- and dust-poor galaxies.



قيم البحث

اقرأ أيضاً

274 - N. Scoville , H. Aussel , K. Sheth 2014
The use of submm dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star forming galaxies, Planck observations of the Milky Way and high redshift submm galaxies (SMGs). All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh-Jeans (RJ) tail of the dust emission can be used as an accurate and very fast probe of the ISM in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350 GHz) dust emission in 107 galaxies from z = 0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar mass-selected from COSMOS to have $M_* simeq10^{11}$msun: 37 at z$sim0.4$, 33 at z$sim0.9$ and 31 at z$=2$. A fourth sample with 6 IR luminous galaxies at z = 2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased a factor $sim 6$ from $1 - 2 times 10^{10}$msun at both z = 2 and 0.9 down to $sim 2 times 10^9$msun at z = 0.4. The IR luminous sample at z = 2 shows a further $sim 4$ times increase in M$_{ISM}$ compared to the equivalent non-IR bright sample at the same redshift. The gas mass fractions are $sim 2pm0.5, 12pm3, 14pm2 ~rm{and} ~53pm3$ $%$ for the four subsamples (z = 0.4, 0.9, 2 and IR bright galaxies).
The dust properties in high-redshift galaxies provide clues to the origin of dust in the Universe. Although dust has been detected in galaxies at redshift $z>7$, it is difficult to constrain the dominant dust sources only from the total dust amount. Thus, we calculate the evolution of grain size distribution, expecting that different dust sources predict different grain size distributions. Using the star formation time-scale and the total baryonic mass constrained by the data in the literature, we calculate the evolution of grain size distribution. To explain the total dust masses in ALMA-detected $z>7$ galaxies, the following two solutions are possible: (i) high dust condensation efficiency in stellar ejecta, and (ii) efficient accretion (dust growth by accreting the gas-phase metals in the interstellar medium). We find that these two scenarios predict significantly different grain size distributions: in (i), the dust is dominated by large grains ($agtrsim 0.1~mu$m, where $a$ is the grain radius), while in (ii), the small-grain ($alesssim 0.01~mu$m) abundance is significantly enhanced by accretion. Accordingly, extinction curves are expected to be much steeper in (ii) than in (i). Thus, we conclude that extinction curves provide a viable way to distinguish the dominant dust sources in the early phase of galaxy evolution.
The recent discovery of high redshift dusty galaxies implies a rapid dust enrichment of their interstellar medium (ISM). To interpret these observations, we run a cosmological simulation in a 30$h^{-1}$ cMpc/size volume down to $z approx 4$. We use t he hydrodynamical code dustyGadget, which accounts for the production of dust by stellar populations and its evolution in the ISM. We find that the cosmic dust density parameter ($Omega_{rm d}$) is mainly driven by stellar dust at $z gtrsim 10$, so that mass- and metallicity-dependent yields are required to assess the dust content in the first galaxies. At $z lesssim 9$ the growth of grains in the ISM of evolved systems (Log$(M_{star}/M_{odot})>8.5$) significantly increases their dust mass, in agreement with observations in the redshift range $4 lesssim z < 8$. Our simulation shows that the variety of high redshift galaxies observed with ALMA can naturally be accounted for by modeling the grain-growth timescale as a function of the physical conditions in the gas cold phase. In addition, the trends of dust-to-metal (DTM) and dust-to-gas (${cal D}$) ratios are compatible with the available data. A qualitative investigation of the inhomogeneous dust distribution in a representative massive halo at $z approx 4$ shows that dust is found from the central galaxy up to the closest satellites along polluted filaments with $rm Log({cal D}) leq -2.4$, but sharply declines at distances $d gtrsim 30$ kpc along many lines of sight, where $rm Log({cal D}) lesssim -4.0$.
120 - Soh Ikarashi 2014
We report the source size distribution, as measured by ALMA millimetric continuum imaging, of a sample of 13 AzTEC-selected submillimeter galaxies (SMGs) at z_photo ~ 3-6. Their infrared luminosities and star-formation rates (SFR) are L_IR ~ 2-6 x 10 ^12 L_sun and ~ 200-600 M_sun yr-1, respectively. The size of z ~ 3-6 SMGs ranges from 0.10 to 0.38 with a median of 0.20+0.03-0.05 (FWHM), corresponding to a median circularized effective radius (Rc,e) of 0.67+0.13-0.14 kpc, comparable to the typical size of the stellar component measured in compact quiescent galaxies at z ~ 2 (cQGs) --- R ~ 1 kpc. The median surface SFR density of our z ~ 3-6 SMGs is 100+42-26 M_sun yr-1 kpc-2, comparable to that seen in local merger-driven (U)LIRGsrather than in extended disk galaxies at low and high redshifts. The discovery of compact starbursts in z >~ 3 SMGs strongly supports a massive galaxy formation scenario wherein z ~ 3-6 SMGs evolve into the compact stellar components of z ~ 2 cQGs. These cQGs are then thought to evolve into the most massive ellipticals in the local Universe, mostly via dry mergers. Our results thus suggest that z >~ 3 SMGs are the likely progenitors of massive local ellipticals, via cQGs, meaning that we can now trace the evolutionary path of the most massive galaxies over a period encompassing ~ 90% of the age of the Universe.
We conducted observations of 12CO(J=5-4) and dust thermal continuum emission toward twenty star-forming galaxies on the main sequence at z~1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trac e the distributions of star-forming galaxies in diagrams of stellar mass-star formation rate and stellar mass-metallicity. We detected CO emission lines from eleven galaxies. The molecular gas mass is derived by adopting a metallicity-dependent CO-to-H2 conversion factor and assuming a CO(5-4)/CO(1-0) luminosity ratio of 0.23. Molecular gas masses and its fractions (molecular gas mass/(molecular gas mass + stellar mass)) for the detected galaxies are in the ranges of (3.9-12) x 10^{10} Msun and 0.25-0.94, respectively; these values are significantly larger than those in local spiral galaxies. The molecular gas mass fraction decreases with increasing stellar mass; the relation holds for four times lower stellar mass than that covered in previous studies, and that the molecular gas mass fraction decreases with increasing metallicity. Stacking analyses also show the same trends. The dust thermal emissions were clearly detected from two galaxies and marginally detected from five galaxies. Dust masses of the detected galaxies are (3.9-38) x 10^{7} Msun. We derived gas-to-dust ratios and found they are 3-4 times larger than those in local galaxies. The depletion times of molecular gas for the detected galaxies are (1.4-36) x 10^{8} yr while the results of the stacking analysis show ~3 x 10^{8} yr. The depletion time tends to decrease with increasing stellar mass and metallicity though the trend is not so significant, which contrasts with the trends in local galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا