ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic confirmation of z~7 LBGs: probing the earliest galaxies and the epoch of reionization

165   0   0.0 ( 0 )
 نشر من قبل Laura Pentericci
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the final results from our ultra-deep spectroscopic campaign with FORS2 at the ESO/VLT for the confirmation of z~7 z--band dropout candidates selected from our VLT/Hawk-I imaging survey over three independent fields. In particular we report on two newly discovered galaxies at redshift ~6.7 in the NTT deep field: both galaxies show a Ly-alpha emission line with rest-frame EWs of the order 15-20 A and luminosities of 2-4 X 10^{42} erg/s. We also present the results of ultra-deep observations of a sample of i-dropout galaxies, from which we set a solid upper limit on the fraction of interlopers. Out of the 20 z-dropouts observed we confirm 5 galaxies at 6.7 < z < 7.1. This is systematically below the expectations drawn on the basis of lower redshift observations: in particular there is a significant lack of objects with intermediate Ly-alpha EWs (between 20 and 55 A). We conclude that the trend for the fraction of Ly-alpha emission in LBGs that is constantly increasing from z~3 to z~6 is most probably reversed from z~6 to z~7. Explaining the observed rapid change in the LAE fraction among the drop-out population with reionization requires a fast evolution of the neutral fraction of hydrogen in the Universe. Assuming that the Universe is completely ionized at z=6 and adopting the semi-analytical models of Dijkstra et al. (2011), we find that our data require a change of the neutral hydrogen fraction of the order Delta chi_{HI} ~ 0.6 in a time Delta z ~ 1, provided that the escape fraction does not increase dramatically over the same redshift interval.



قيم البحث

اقرأ أيضاً

Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch. However, at the highest redshifts ($z>7.5$; lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at $z>7.5$. We detected the Lyman-$alpha$ emission line at $sim 10504$ {AA} in two separate observations with MOSFIRE on the Keck I Telescope and independently with the Hubble Space Telescopes slit-less grism spectrograph, implying a source redshift of $z = 7.640 pm 0.001$. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 ($z = 0.545$), with an estimated intrinsic luminosity of $M_{AB} = -19.6 pm 0.2$ mag and a stellar mass of $M_{star} = 3.0^{+1.5}_{-0.8} times 10^8$ solar masses. Both are an order of magnitude lower than the four other Lyman-$alpha$ emitters currently known at $z > 7.5$, making it probably the most distant representative source of reionization found to date.
We present new results on [CII]158$mu$ m emission from four galaxies in the reionization epoch. These galaxies were previously confirmed to be at redshifts between 6.6 and 7.15 from the presence of the Ly$alpha$ emission line in their spectra. The Ly $alpha$ emission line is redshifted by 100-200 km/s compared to the systemic redshift given by the [CII] line. These velocity offsets are smaller than what is observed in z~3 Lyman break galaxies with similar UV luminosities and emission line properties. Smaller velocity shifts reduce the visibility of Ly$alpha$ and hence somewhat alleviate the need for a very neutral IGM at z~7 to explain the drop in the fraction of Ly$alpha$ emitters observed at this epoch. The galaxies show [CII] emission with L[CII]=0.6-1.6 x10$^8 L_odot$: these luminosities place them consistently below the SFR-L[CII] relation observed for low redshift star forming and metal poor galaxies and also below z =5.5 Lyman break galaxies with similar star formation rates. We argue that previous undetections of [CII] in z~7 galaxies with similar or smaller star formation rates are due to selection effects: previous targets were mostly strong Ly$alpha$ emitters and therefore probably metal poor systems, while our galaxies are more representative of the general high redshift star forming population .
We present new results from our search for z~7 galaxies from deep spectroscopic observations of candidate z-dropouts in the CANDELS fields. Despite the extremely low flux limits achieved by our sensitive observations, only 2 galaxies have robust reds hift identifications, one from its Lyalpha emission line at z=6.65, the other from its Lyman-break, i.e. the continuum discontinuity at the Lyalpha wavelength consistent with a redshift 6.42, but with no emission line. In addition, for 23 galaxies we present deep limits in the Lyalpha EW derived from the non detections in ultra-deep observations. Using this new data as well as previous samples, we assemble a total of 68 candidate z~7 galaxies with deep spectroscopic observations, of which 12 have a line detection. With this much enlarged sample we can place solid constraints on the declining fraction of Ly$alpha$ emission in z~7 Lyman break galaxies compared to z~6, both for bright and faint galaxies. Applying a simple analytical model, we show that the present data favor a patchy reionization process rather than a smooth one.
We present the results of CANDELSz7, an ESO large program aimed at confirming spectroscopically a homogeneous sample of z~6 and z~7 star forming galaxies. The candidates were selected in the GOODS-South, UDS and COSMOS fields using the official CANDE LS catalogs based on H160-band detections. Standard color criteria, which were tailored depending on the ancillary multi-wavelength data available for each field, were applied to select more than 160 candidate galaxies at z~6 and z~7. Deep medium resolution FORS2 spectroscopic observations were then conducted with integration times ranging from 12 to 20 hours, to reach a Lyalpha flux limit of approximately 1-3x 10-18 erg/s/cm^2 at 3sigma. For about 40% of the galaxies we could determine a spectroscopic redshift, mainly through the detection of a single emission line that we interpret as Lyalpha emission, or for some of the brightest objects (H160< 25.5) from the presence of faint continuum and sharp drop that we interpret as a Lyman break. In this paper we present the redshifts and main properties of 65 newly confirmed high redshift galaxies. Adding previous proprietary and archival data we assemble a sample of ~260 galaxies that we use to explore the evolution of the Lyalpha fraction in Lyman break galaxies and the change in the shape of the emission line between z~6 and z~7. We also discuss the accuracy of the CANDELS photometric redshifts in this redshift range.
We combine observational data on a dozen independent cosmic properties at high-$z$ with the information on reionization drawn from the spectra of distant luminous sources and the cosmic microwave background (CMB) to constrain the interconnected evolu tion of galaxies and the intergalactic medium since the dark ages. The only acceptable solutions are concentrated in two narrow sets. In one of them reionization proceeds in two phases: a first one driven by Population III stars, completed at $zsim 10$, and after a short recombination period a second one driven by normal galaxies, completed at $zsim 6$. In the other set both kinds of sources work in parallel until full reionization at $zsim 6$. The best solution with double reionization gives excellent fits to all the observed cosmic histories, but the CMB optical depth is 3-$sigma$ larger than the recent estimate from the Planck data. Alternatively, the best solution with single reionization gives less good fits to the observed star formation rate density and cold gas mass density histories, but the CMB optical depth is consistent with that estimate. We make several predictions, testable with future observations, that should discriminate between the two reionization scenarios. As a byproduct our models provide a natural explanation to some characteristic features of the cosmic properties at high-$z$, as well as to the origin of globular clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا