ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular beam epitaxy of InAs nanowires in SiO2 nanotube templates: challenges and prospects for integration of III-Vs on Si

59   0   0.0 ( 0 )
 نشر من قبل Jelena Vukajlovic Plestina
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Guided growth of semiconductor nanowires in nanotube templates has been considered as a potential platform for reproducible integration of III-Vs on silicon or other mismatched substrates. Herein, we report on the challenges and prospects of molecular beam epitaxy of InAs nanowires on SiO2/Si nanotube templates. We show how and under which conditions the nanowire growth is initiated by In-assisted vapor-liquid-solid growth enabled by the local conditions inside the nanotube template. The conditions for high yield of vertical nanowires are investigated in terms of the nanotube depth, diameter and V/III flux ratios. We present a model that further substantiates our findings. This work opens new perspectives for monolithic integration of III-Vs on the silicon platform enabling new applications in the electronics, optoelectronics and energy harvesting arena.

قيم البحث

اقرأ أيضاً

We have investigated in-situ Si doping of InAs nanowires grown by molecular beam epitaxy from gold seeds. The effectiveness of n-type doping is confirmed by electrical measurements showing an increase of the electron density with the Si flux. We also observe an increase of the electron density along the nanowires from the tip to the base, attributed to the dopant incorporation on the nanowire facets whereas no detectable incorporation occurs through the seed. Furthermore the Si incorporation strongly influences the lateral growth of the nanowires without giving rise to significant tapering, revealing the complex interplay between axial and lateral growth.
Recently theorized hybrid II-IV-N{_2} / III-N heterostructures, based on current commercialized (In,Ga)N devices, are predicted to significantly advance the design space of highly efficient optoelectronics in the visible spectrum, yet there are few e pitaxial studies of II-IV-N{_2} materials. In this work, we present heteroepitaxial ZnGeN{_2} grown on GaN buffers and AlN templates. We demonstrate that a GaN nucleating surface is crucial for increasing the ZnGeN{_2} crystallization rate to combat Zn desorption, extending the stoichiometric growth window from 215 {degree}C on AlN to 500 {degree}C on GaN buffers. Structural characterization reveals well crystallized films with threading dislocations extending from the GaN buffer. These films have a critical thickness for relaxation of 20 nm - 25 nm as determined by reflection high energy electron diffraction (RHEED) and cross-sectional scanning electron microscopy (SEM). The films exhibit a cation-disordered wurtzite structure, with lattice constants a = 3.216 {AA} {pm} 0.004 {AA} and c = 5.215 {AA} {pm} 0.005 {AA} determined by RHEED and X-ray diffraction (XRD). This work demonstrates a significant step towards the development of hybrid ZnGeN{_2}-GaN integrated devices.
We demonstrate the self-assembled growth of vertically aligned GaN nanowire ensembles on a flexible Ti foil by plasma-assisted molecular beam epitaxy. The analysis of single nanowires by transmission electron microscopy reveals that they are single c rystalline. Low-temperature photoluminescence spectroscopy demonstrates that, in comparison to standard GaN nanowires grown on Si, the nanowires prepared on the Ti foil exhibit a equivalent crystalline perfection, a higher density of basal-plane stacking faults, but a reduced density of inversion domain boundaries. The room-temperature photoluminescence spectrum of the nanowire ensemble is not influenced or degraded by the bending of the substrate. The present results pave the way for the fabrication of flexible optoelectronic devices based on GaN nanowires on metal foils.
We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by x-ray diffraction (XRD) while atomic forc e microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 {AA}. Transport measurements of exfoliated graphene after SrO deposition show a strong dependence between the Dirac point and Sr oxidation. Subsequently, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
We present a detailed study of the growth of the tetragonal polymorph of antiferromagnetic CuMnAs by the molecular beam epitaxy technique. We explore the parameter space of growth conditions and their effect on the microstructural and transport prope rties of the material. We identify its typical structural defects and compare the properties of epitaxial CuMnAs layers grown on GaP, GaAs and Si substrates. Finally, we investigate the correlation between the crystalline quality of CuMnAs and its performance in terms of electrically induced resistance switching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا