ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave Admittance of Gold-Palladium Nanowires with Proximity-Induced Superconductivity

121   0   0.0 ( 0 )
 نشر من قبل Russell Lake
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report quantitative electrical admittance measurements of diffusive superconductor--normal-metal--superconductor (SNS) junctions at gigahertz frequencies and millikelvin temperatures. The gold-palladium-based SNS junctions are arranged into a chain of superconducting quantum interference devices. The chain is coupled strongly to a multimode microwave resonator with a mode spacing of approximately 0.6 GHz. By measuring the resonance frequencies and quality factors of the resonator modes, we extract the dissipative and reactive parts of the admittance of the chain. We compare the phase and temperature dependence of the admittance near 1 GHz to theory based on the time-dependent Usadel equations. This comparison allows us to identify important discrepancies between theory and experiment that are not resolved by including inelastic scattering or elastic spin-flip scattering in the theory.

قيم البحث

اقرأ أيضاً

We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible ra nge of parameters. At low temperatures, T<<T_c, and zero magnetic field, the density of states is characterized by a small gap E_g<T_c resulting from the collective proximity effect. Transverse magnetic field H_g(T) E_g is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field H_{g2}(T).
Coupling a normal metal wire to a superconductor induces an excitation gap in the normal metal. In the absence of disorder, the induced excitation gap is strongly suppressed by finite-size effects if the thickness of the superconductor is much smalle r than the thickness of the normal metal and the superconducting coherence length. We show that the presence of disorder, either in the bulk or at the exposed surface of the superconductor, significantly enhances the magnitude of the induced gap, such that it approaches the superconducting gap in the limit of strong disorder. We also discuss the shift of energy bands inside the normal-metal wire as a result of the coupling to the superconducting shell.
In this letter we report on proximity superconductivity induced in CdTe-HgTe core-shell nanowires, a quasi-one-dimensional heterostructure of the topological insulator HgTe. We demonstrate a Josephson supercurrent in our nanowires contacted with supe rconducting Al leads. The observation of a sizable $I_c R_n$ product, a positive excess current and multiple Andreev reflections up to fourth order further indicate a high interface quality of the junctions.
We report an experimental study of proximity effect-induced superconductivity in crystalline Cu and Co nanowires and a nanogranular Co nanowire structure in contact with a superconducting W floating electrode which we call inducer. The nanowires were grown by electrochemical deposition in heavy-ion-track etched polycarbonate templates. The nanogranular Co structure was fabricated by focused electron beam induced deposition (FEBID), while the amorphous W inducer was obtained by focused ion beam induced deposition (FIBID). For electrical resistance measurements up to three pairs of Pt voltage leads were deposited by FIBID at different distances beside the inner inducer electrode, thus allowing us to probe the proximity effect over a length of 2-12 $mu$m. Relative $R(T)$ drops of the same order of magnitude have been observed for the Co and Cu nanowires when sweeping the temperature below 5.2 K ($T_c$ of the FIBID-deposited W inducer). By contrast, relative $R(T)$ drops were found to be an order of magnitude smaller for the nanogranular Co nanowire structure. Our analysis of the resistance data shows that the superconducting proximity length in crystalline Cu and Co is about 1 $mu$m at low temperatures, attesting to a long-range proximity effect in the case of ferromagnetic Co. Moreover, this long-range proximity effect has been revealed to be insusceptible to magnetic fields up to 11 T, which is indicative of spin-triplet pairing. At the same time, in the nanogranular Co structure proximity-induced superconductivity is strongly suppressed due to the dominating Cooper pair scattering caused by the intrinsic microstructure of the FEBID deposit.
Hybrid semiconducting nanowire devices combining epitaxial superconductor and ferromagnetic insulator layers have been recently explored experimentally as an alternative platform for topological superconductivity at zero applied magnetic field. In th is proof-of-principle work we show that the topological regime can be reached in actual devices depending on some geometrical constraints. To this end, we perform numerical simulations of InAs wires in which we explicitly include the superconducting Al and magnetic EuS shells, as well as the interaction with the electrostatic environment at a self-consistent mean-field level. Our calculations show that both the magnetic and the superconducting proximity effects on the nanowire can be tuned by nearby gates thanks to their ability to move the wavefunction across the wire section. We find that the topological phase is achieved in significant portions of the phase diagram only in configurations where the Al and EuS layers overlap on some wire facet, due to the rather local direct induced spin polarization and the appearance of an extra indirect exchange field through the superconductor. While of obvious relevance for the explanation of recent experiments, tunable proximity effects are of interest in the broader field of superconducting spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا